Skip to main content
Log in

The boundary-layer effect on the crack tip field in mechanism-based strain gradient plasticity

  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

The theory of mechanism-based strain gradient (MSG) plasticity involves two material length parameters, namely the intrinsic material length land the mesoscale cell size l ε, which are on the order of a few microns and 0.1 μm, respectively. Prior studies suggest that l εhas essentially no effect on the macroscopic quantities, but it may affect the local stress distribution. We demonstrate in this paper that there is a boundary layer effect associated with l εin MSG plasticity, and the thickness of the boundary layer is on the order of   l 2 ε big/l. By neglecting this boundary layer effect, a stress-dominated asymptotic field around a crack tip in MSG plasticity is obtained. This asymptotic field is valid at a distance to the crack tip between l εand l(i.e., from 0.1 μm to a few microns). The stress in this asymptotic field has an approximate singularity of r −2/3, which is more singular than not only the HRR field in classical plasticity but also the classical elastic Kfield (r −1/2). The stress level in this asymptotic field is two to three times higher than the HRR field, which provides an alternative mechanism for cleavage fracture in ductile materials observed in experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Acharya, A. and Bassani, J.L. (2000). Lattice incompatibility and a gradient theory of crystal plasticity. Journal of Mechanics and Physics of Solids 48,1565–1595.

    Google Scholar 

  • Acharya A. and Beaudoin A.J. (2000). Grain-size effect in viscoplastic polycrystals at moderate strains. Journal of Mechanics and Physics of Solids 48,2213-2230.

    Google Scholar 

  • Aifantis, E.C. (1984). On the microstructural origin of certain inelastic models.Journal of Engineering Materials and Technology 106,326–330.

    Google Scholar 

  • Aifantis, E.C. (1992). On the role of gradients in the localization of deformation and fracture. International Journal of Engineering and Sciences 301279–1299.

    Google Scholar 

  • Arsenlis, A. and Parks, D.M. (1999). Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density.Acta Materials 47,1597–1611.

    Google Scholar 

  • Ashby, M.F. (1970). The deformation of plastically non-homogeneous alloys.Philosophical Magazine 21,399–424.

    Google Scholar 

  • Bagchi, A., Lucas, G.E., Suo, Z. and Evans, A.G. (1994). A new procedure for measuring the decohesion energy of thin ductile films on substrates.Journal of Materials Research 9,1734–1741.

    Google Scholar 

  • Bagchi, A. and Evans, A.G. (1996). The mechanics and physics of thin film decohesion and its measurement. Interface Science 3, 169–193.

    Google Scholar 

  • Begley, M.R. and Hutchinson, J.W. (1998). The mechanics of size-dependent indentation. Journal of Mechanics and Physics of Solids 46,2049–2068.

    Google Scholar 

  • Beltz, G.E., Rice, J.R., Shih, C.F. and Xia, L. (1996). A self-consistent model for cleavage in the presence of plastic flow.Acta Materials 44,3943–3954.

    Google Scholar 

  • Beltz G.E. and Wang, J.S. (1992). Crack direction effects along copper sapphire interfaces.Acta Metallurgica et Materialia 40,1675–1683.

    Google Scholar 

  • Chen, S.H. and Wang, T.C. (2000). A new hardening law for strain gradient plasticity.Acta Materials 48,3997–4005.

    Google Scholar 

  • Chen, J.Y., Wei, Y., Huang, Y., Hutchinson, J.W. and Hwang, K.C. (1999). The crack tip fields in strain gradient plasticity: the asymptotic and numerical analyses.Engeneering Fracture Mechanics 64,625–648.

    Google Scholar 

  • Cleveringa, H.H.M., VanderGiessen, E. and Needleman, A. (1997). Comparison of discrete dislocation and continuum plasticity predictions for a composite material.Acta Materials 45,3163–3179.

    Google Scholar 

  • Cleveringa, H.H.M., VanderGiessen, E. and Needleman, A. (1998). Discrete dislocation simulations and size dependent hardening in single slip.Journal of PhysicsIV,8,83–92.

    Google Scholar 

  • Cleveringa, H.H.M., VanderGiessen, E. and Needleman, A. (1999a). A discrete dislocation analysis of bending.Internationals Journal of Plasticity 15,837–868.

    Google Scholar 

  • Cleveringa, H.H.M., VanderGiessen, E. and Needleman, A. (1999b). A discrete dislocation analysis of residual stresses in a composite material.Philosophical Magazine A79,893–920.

    Google Scholar 

  • Cleveringa, H.H.M., VanderGiessen, E. and Needleman, A. (2000). A discrete dislocation analysis of mode I crack growth. Journal of Mechanics and Physics of Solids,48,1133–1157.

    Google Scholar 

  • Cottrell, A.H. (1964). The Mechanical Properties of Materials,J. Willey, New York, 277.

    Google Scholar 

  • Dai, H. and Parks, D.M. (2001). Geometrically-necessary dislocation density in continuum crystal plasticity theory and FEM implementation (unpublished manuscript).

  • de Borst R. and Mühlhaus H.-B. (1991). Computational strategies for gradient continuum models with a view to localization of deformation. In Proceedings of International Conference on Nonlinear Engineering Computation. (Edited by N. Bićanićc, P. Marovićc, D.R.J. Owen, V. Jović and A. Mihanović), Prineridge Press, Swansea, 239–260.

    Google Scholar 

  • de Borst R. and Mühlhaus H.-B. (1992). Gradient-dependent plasticity: formulation and algorithmic aspects.International Journal for Numerical Methods in Engineering 35,521–539.

    Google Scholar 

  • de Guzman, M.S., Neubauer, G., Flinn, P. and Nix, W.D. (1993). The role of indentation depth on the measured hardness of materials.Materials Research Symposium Proceedings 308,613–618.

    Google Scholar 

  • Elssner, G., Korn, D. and Ruehle, M. (1994). The influence of interface impurities on fracture energy of UHV diffusion bonded metal-ceramic bicrystals.Scripta Metallurgica et Materialia 31,1037–1042.

    Google Scholar 

  • Fleck, N.A. and Hutchinson, J.W. (1993).A phenomenological theory for strain gradient effects in plasticity. Journa of Mechanics and Physics of Solids 41,1825–1857.

    Google Scholar 

  • Fleck, N.A. and Hutchinson, J.W. (1997). Strain gradient plasticity.Advances in Applied Mechanics(Edited by J.W. Hutchinson, and T.Y. Wu), Vol 33,Academic Press, New York,295–361.

    Google Scholar 

  • Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994). Strain gradient plasticity: theory and experiments.Acta Metallurgica et Materialia 42,475–487.

    Google Scholar 

  • Gao, H., Huang, Y. and Nix, W.D. (1999a). Modeling plasticity at the micrometer scale.Naturwissenschaften 86,507–515.

    Google Scholar 

  • Gao, H., Huang, Y., Nix, W.D. and Hutchinson, J.W. (1999b). Mechanism-based strain gradient plasticity-I. Theory.Journal of Mechanics and Physics of Solids 47,1239–1263.

    Google Scholar 

  • Gurtin, M.E. (2000). On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. Journal of Mechanics and Physics of Solids 48,989–1036.

    Google Scholar 

  • Huang, Y., Gao, H., Nix, W.D. and Hutchinson, J.W. (2000a). Mechanism-based strain gradient plasticity-II. Analysis.Journal of Mechanics and Physics of Solids 48,99–128.

    Google Scholar 

  • Huang, Y., Xue, Z., Gao, H. and Xia, Z.C. (2000b). A study of micro-indentation hardness tests by mechanismbased strain gradient plasticity.Journal of Materials Research 15,1786–1796.

    Google Scholar 

  • Huang, Y., Zhang, L., Guo, T.F. and Hwang, K.C. (1995). Near-tip fields for cracks in materials with strain-gradient effects. Proceedings of IUTAM Symposium on Nonlinear Analysis of Fracture(Edited by J.R. Willis), Kluwer Academic Publishers, Cambridge, England, 231–242.

    Google Scholar 

  • Huang, Y., Zhang, L., Guo, T.F. and Hwang, K.C. (1997). Mixed mode near-tip fields for cracks in materials with strain-gradient effects.Journal of Mechancis and Physics of Solids 45,439–465.

    Google Scholar 

  • Hutchinson, J.W. (1968). Singular behavior at the end of a tensile crack in a hardening material.Journal of Mechanics and Physics of Solids 16,13–31.

    Article  Google Scholar 

  • Hutchinson, J.W. (1997). Linking scales in mechanics. Advances in Fracture Research(Edited by B.L. Karihaloo, Y.W. Mai, M.I. Ripley and R.O. Ritchie),Pergamon Press, Amsterdam,1–14.

    Google Scholar 

  • Jiang, H., Huang, Y., Zhuang, Z. and Hwang, K.C. (2001). Fracture in mechanism-based strain gradient plasticity.Journal of Mechanics and Physics of Solids 49,979–993.

    Google Scholar 

  • Korn D., Elssner, G., Fischmeister, H.F., et al. (1992). Influence of interface impurities on the fracture energy of UHV bonded niobium sapphire bicrystals.Acta Metallurgica et Materialia 40,S355-S360 Suppl. S.

    Google Scholar 

  • Lasry D. and Belytschko, T. (1988). Localization limiters in transient problems. International Journal of Solids and Structures 24,581–597.

    Google Scholar 

  • Ma, Q. and Clarke, D.R. (1995). Size dependent hardness of silver single crystals.Journal of Materials Research 10,853–863.

    Google Scholar 

  • McElhaney, K.W., Vlassak, J.J. and Nix, W.D. (1998). Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments.Journal of Materials Research 13, 1300–1306.

    Google Scholar 

  • Mühlhaus H.B. and Aifantis E.C. (1991). A variational principle for gradient plasticity.Interntional Journal of Solids and Structures 28,845–857.

    Google Scholar 

  • Needleman, A. (2000).Computational mechanics at the mesoscale.Acta Materialia 48, 105–124.

    Google Scholar 

  • Nix, W.D. (1989). Mechanical properties of thin films.Materials Transactions A 20A, 2217–2245.

    Google Scholar 

  • Nix, W.D. (1997). Elastic and plastic properties of thin films on substrates: nanoindentation techniques. Materials Science and Engineering A-Struct. 234,37–44.

    Google Scholar 

  • Nix, W.D. and Gao, H. (1998). Indentation size effects in crystalline materials: a law for strain gradient plasticity.Journal of Mechanics and Physics of Solids 46,411–425.

    Google Scholar 

  • Nye, J.F. (1953). Some geometrical relations in dislocated crystals.Acta Metallurgica et Materialia 1, 153–162.

    Google Scholar 

  • O'Dowd, N.P., Stout, M.G. and Shih, C.F. (1992). Fracture-toughness of alumina niobium interfaces – experiments and analyses.Philosophical Magazine A 66,1037–1064.

    Google Scholar 

  • Oh, T.S., Cannon, R.M. and Ritchie, R.O. (1987). Subcritical crack growth along ceramic-metal interfaces. Jom-Journal of Minerals, Metals and Materials S 39,A57–A57.

    Google Scholar 

  • Poole, W.J., Ashby, M.F. and Fleck, N.A. (1996). Micro-hardness of annealed and work-hardened copper polycrystals.Scripta Matererialia 34, 559–564.

    Google Scholar 

  • Press, W.H., Flannery, B.P. Teukolsky, S.A. and Vetterling, W.T. (1986). Numerical Recipes, Cambridge University Press, Cambridge.

    Google Scholar 

  • Rice, J.R. and Rosengren, G.F. (1968). Plane strain deformation near a crack tip in a power law hardening material.Journal of Mechanics and Physics of Solids 16,1–12.

    Article  Google Scholar 

  • Shi, M., Huang, Y., Gao, H. and Hwang, K.C. (2000). Non-existence of separable crack tip field in mechanismbased strain gradient plasticity.International Journal of Solids and Structures 37, 5995–6010.

    Google Scholar 

  • Shu, J.Y. and Fleck, N.A. (1999). Strain gradient crystal plasticity: size-dependent deformation of bicrystals. Journal of Mechanics and Physics of Solids 47,297–324.

    Google Scholar 

  • Sluys L.J., de Borst, R. and Mühlhaus H.B. (1993). Wave-propagation, localization and dispersion in a gradientdependent medium.International Journal of Solids and Structures 30,1153–1171.

    Google Scholar 

  • Stelmashenko, N.A., Walls, A.G., Brown, L.M. and Milman, Y.V. (1993). Microindentation onWand Mo oriented single crystals: an STM study.Acta Metallurgica et Materialia 41, 2855–2865.

    Google Scholar 

  • Stolken, J.S. and Evans, A.G. (1998). A microbend test method for measuring the plasticity length scale. Acta Materialia 46,5109–5115.

    Google Scholar 

  • Suo, Z., Shih, C.F. and Varias A.G. (1993). A theory for cleavage cracking in the presence of plastic-flow. Acta Metallurgica et Materialia 411551–1557.

    Google Scholar 

  • Suresh S., Nieh, T.G. and Choi, B.W. (1999). Nano-indentation of copper thin films on silicon substrates. Scripta Materialia 41,951–957.

    Google Scholar 

  • Taylor, G.I. (1938). Plastic strain in metals.Journal of the Institute of Metals 62,307–324.

    Google Scholar 

  • Wang, J.-S. and Anderson, P.M. (1991). Fracture behavior of embrittled FCC metal bicrystals and its misorientation dependence.Acta Metallurgica et Materialia 39,779–792.

    Google Scholar 

  • Wei, Y. and Hutchinson, J.W. (1997). Steady-state crack growth and work of fracture for solids characterized by strain gradient plasticity.Journal of Mechanics and Physics of Solids 45,1253–1273.

    Google Scholar 

  • Wei, Y. and Hutchinson, J.W. (1999).Models of interface separation accompanied by plastic dissipation at multiple scales.International Journal of Fracture 95,1–17.

    Google Scholar 

  • Zbib H.M. and Aifantis E.C. (1988). On the localization and postlocalization behavior of plastic deformation. Part I. On the initiation of shear bands; Part II. On the evolution and thickness of shear bands. Part III. On the structure and velocity of Portevin-Le Chatelier bands.Res. Mech.,261–277, 279–292 and 293–305.

  • Zhang L., Huang Y., Chen J.Y. and Hwang K.C. (1998). The mode III full-field solution in elastic materials with strain gradient effects.International Journal of Fracture 92,325–348.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, M., Huang, Y., Jiang, H. et al. The boundary-layer effect on the crack tip field in mechanism-based strain gradient plasticity. International Journal of Fracture 112, 23–41 (2001). https://doi.org/10.1023/A:1013548131004

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013548131004

Navigation