Skip to main content
Log in

Effect of Methyl Jasmonate on Hydroxamic Acid Content, Protease Activity, and Bird Cherry–Oat Aphid Rhopalosiphum padi (L.) Probing Behavior

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The concentration of hydroxamic acids increased in wheat seedlings exposed to methyl jasmonate. The proteins isolated from such seedlings inhibited trypsin activity. Free-moving aphids avoided plants that had been exposed to methyl jasmonate prior to the experiment. These aphids were able to reject such plants within 15 min, and the inclination to stay on control plants lasted at least 24 hr. Electronic recording (EPG) of aphid stylet activities showed a trend towards reduction in penetration time and total time of phloem sap ingestion on jasmonate–treated plants. However, the duration of the first period of feeding was similar on treated and control plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • ARGANDONA, V. H. and CORCUERA, L. J. 1985. Distribution of hydroxamic acids in Zea mays tissue. Phytochemistry 24:177–178.

    Google Scholar 

  • ARGANDONA, V. H., CORCUERA, L. J., NIEMEYER, H. M., and CAMPBELL, B. C. 1983. Toxicity and feeding deterrency of hydroxamic acids from Graminae in synthetic diets against the greenbug, Schizaphis graminum. Entomol. Exp. Appl. 34:134–138.

    Google Scholar 

  • ARGANDONA, V. H., ZUNIGA, G. E., and CORCUERA, L. 1987. Distribution of gramine and hydroxamic acids in barley and wheat leaves. Phytochemistry 26:1917–1918.

    Google Scholar 

  • ATKINSON, J., ARNASON, J., CAMPOS, F., NIEMEYER, H. M., and BRAVO, H. R. 1992. Synthesis and reactivity of cyclic hydroxamic acids, pp. 349–360, in D. R. Baker, J. G. Fenyes, and J. J. Steffens (eds.). Synthesis and Reactivity of Cyclic Hydroxamic Acids. ACS Symposium Series No.504. American Chemical Society, Washington, D.C.

    Google Scholar 

  • BENNETT, R. N. and WALLSGROVE, R. M. 1994. Secondary metabolites in plant defense mechanisms. New Phytol. 127:617–633.

    Google Scholar 

  • BLACKMAN R. L. and EASTOP, V. F. 1985. Aphids on the worlds crops: An identification guide. John Wiley & Sons, New York, pp. 413.

    Google Scholar 

  • BODNARYK, R. P. 1994. Potent effect of jasmonates on indole glucosinolates in oilseed rape and mustard. Phytochemistry 35:301–305.

    Google Scholar 

  • BRAVO, H. R. and NIEMEYER, H. M. 1986. A new product from the decomposition of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), a hydroxamic acid from cereals. Heterocycles 24:335–337.

    Google Scholar 

  • BROCK, R. M., FOSBERG, C. W., and BUCHANAN-SMITH, J. G. 1982. Proteolytic activity of rumen microorganisms and effect of proteinase inhibitors. Appl. Environ. Microbiol. 44:561–569.

    PubMed  Google Scholar 

  • BRUDENELL, A. J. P., GRIFFITS, H., ROSSITIER, J. T., and BAKER, D. A. 1999. The phloem mobility of glucosinolates. J. Exp. Bot. 50:745–756.

    Google Scholar 

  • CASARETTO, I. A. and CORCUERA, L. J. 1998. Proteinase inhibitor accumulation in aphid-infested barley leaves. Phytochemistry 49:2279–2286.

    Google Scholar 

  • COLE, R. A. 1994. Isolation of a chitin-binding lectin, with insecticidal activity in chemically-defined synthetic diets, from two wild brassica species with resistance to cabbage aphid Brevicoryne brassicae. Entomol. Exp. Appl. 72:181–187.

    Google Scholar 

  • COPAJA, S., BARRIA, B. N., and NIEMEYER, H. M. 1991. Hydroxamic acid content of perennial triticale. Phytochemistry 30:1531–1534.

    Google Scholar 

  • CORCUERA, L. J., ARGANDONA, V. H., PENA, G. F., PEREZ, F. J., and NIEMEYER, H. M. 1982. Effect of a benzoxazinone from wheat on aphids. Proceedings, 5th Symposium on Insect-Plant Relationships, Wageningen, 1982. Pudoc, Wageningen, pp. 33–39.

  • CREELMAN, R. A. and MULLET, I. E. 1997. Biosynthesis and action of jasmonates in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 48:355–381.

    PubMed  Google Scholar 

  • CUEVAS, L. and NIEMEYER, H. M. 1993. Effect of hydroxamic acids from cereals on aphid cholinesterases. Phytochemistry 34:983–985.

    Google Scholar 

  • ESCOBAR, C. A. and NIEMEYER, H. M. 1993. Potential of hydroxamic acids in breeding for aphid resistance in wheat. Acta Agric. Scand. Sect. B. Soil Plant Sci. 43:163–167.

    Google Scholar 

  • FALKENSTEIN, E., GROTH, B., MITHOFER, A., and WEILER, E. W. 1991. Methyl jasmonate and α-linolenic acid are potent inducers of tendril coiling. Planta 185:316–322.

    Google Scholar 

  • FARMER, E. F. and RYAN, C. A. 1992. Interplant communication: air-borne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87:7713–7716.

    Google Scholar 

  • GIVOVICH, A., MORSE, S., CERDA, H., NIEMEYER, H. M., WRATTEN, S. D., and EDWARDS, P. J. 1992. Hydroxamic acids glucosides in honeydew of aphids feeding on wheat. J. Chem. Ecol. 18:841–846.

    Google Scholar 

  • GIVOVICH, A., SANDSTROM, J., NIEMEYER, H. M., and PETTERSSON, J. 1994. Presence of hydroxamic acid glycoside in wheat phloem sap, and its consequences for performance of Rhopalosiphum padi (L.) (Homoptera: Aphididae). J. Chem. Ecol. 20:1923–1930.

    Google Scholar 

  • GONZALES, L. F. and ROJAS, M. C. 1999. Role of wall peroxidases in oat growth inhibition by DIMBOA. Phytochemistry 50:931–937.

    Google Scholar 

  • HARSULKAR, A. M., GIRI, A. P., PATANKAR, A. G., GUPTA, V. S., SAINANI, M. N., RANJEKAR, P. K., and DESHPANDE, V. V. 1999. Successive use of non host plant proteinase inhibitors required for effective inhibition of Helicoverpa armigera gut proteinase and larval growth. Plant Physiol. 121:497–506.

    PubMed  Google Scholar 

  • HILDEBRAND, D. F., BROWN, G. C., JACKSON, D. M., and HAMILTON-KEMP, T. R. 1993. Effects of some leaf-emitted volatile compounds on aphid population increase. J. Chem. Ecol. 19:1875–1887.

    Google Scholar 

  • JONGSMA, M. A., BAKKER, P. L., VISSER, B., and STIEKAMA, W. J. 1994. Trypsin inhibitor activity in mature tobacco and tomato plants is mainly induced locally in response to insect attack, wounding and virus infection. Planta 195:29–35.

    Google Scholar 

  • KARBAN, R. and BALDWIN, I. T. 1997. Induced Responses to Herbivory. The University of Chicago Press, Chicago, pp. 319.

    Google Scholar 

  • LESZCZYNSKI, B. 1996. Kurs praktyczny w zakresie chemicznych interakcji owady-rosliny na przykladzie mszyc (Aphidoidea). Wyd. Uczel. WSRP w Siedlcach, Siedlce, pp. 390.

    Google Scholar 

  • LESZCZYNSKI, B. and DIXON, A. F. G. 1990. Resistance of cereals to aphids: Interaction between hydroxamic acids and the aphid Sitobion avenae (Homoptera: Aphidiidae). Ann. Appl. Biol. 117:21–30.

    Google Scholar 

  • LESZCZYNSKI, B., WRIGHT, L. C., and BAKOWSKI, T. 1989. Effect of secondary plant substances on winter wheat resistance to grain aphid. Entomol. Exp. Appl. 52:135–139.

    Google Scholar 

  • LESZCZYNSKI, B., TJALLINGII, W. F., and DIXON, A. F. G. 1993. Some remarks on the interaction between hydroxamic acids and grain aphid. Aphid Resistance Newsl. 7:13014.

    Google Scholar 

  • LOAKE, G. J. 1996. Jasmonates: Global regulators of plant gene expression, pp. 215–230, in M. Smallwood, J. P. Knox, and D. J. Bowles (eds.) Membranes: Specialized Function in Plants. BIOS Oxford Scientific Publishers, Oxford.

    Google Scholar 

  • LYR, H. and BASAMIAN, L. 1983. Alkenals, volatile defense substance in plants, their properties and activities. Acta Phytopathol. Acad. Sci. Hung. 18:3–12.

    Google Scholar 

  • MUELLER, J. M. 1997. Enzymes involved in jasmonic acid biosynthesis. Physiol. Plant. 100:653–663.

    Google Scholar 

  • NIEMEYER, H. M. 1988. Hydroxamic acids (4-hydroxy-11,4-benzoxazin-3-ones), defense chemmicals in the Graminae. Phytochemistry 27:3349–3358.

    Google Scholar 

  • NIEMEYER, H. M. and PEREZ, F. J. 1995. Potential of hydroxamic acids in the control of cereal pests, diseases, and weeds. pp. 260–270, in Inderjit, K. M. M. Dakshini, and F. A. Einhellig (eds.). Allelopathy: Organisms, Processes, and Application. ACS Symposium Series No. 582. Americam Chemical Society, Washington, D.C.

    Google Scholar 

  • NIEMEYER, H. M., PESEL, E., COPAJA, S. V., BRAVO, H. R., FRANKE, S., and FRANCKE, W. 1989. Changes in hydroxamic acid levels of wheat plants induced by aphid feeding. Phytochemistry 28:447–449.

    Google Scholar 

  • PARE, P. W. and TUMLINSON, I. H. 1999. Plant volatiles as a defense against insect herbivores. Plant Physiol. 121:325–331.

    PubMed  Google Scholar 

  • PETTERSSON, J. 1995. Aphids, odour, and behavioural ecology, pp. 1–10, in H. M. Niemeyer (ed.). Techniques in Plant-Insect Interactions and Biopesticides. Proceedings, IFS Workshop on Chemical Ecology. Santiago, Chile.

  • PETTERSSON, J., QUIROZ, A., and FAHAD, A. E. 1996. Aphid antixenosis mediated by volatiles in cereals. Acta Agric. Scand. Sect. B, Soil Plant Sci. 46:135–140.

    Google Scholar 

  • RAHBE, Y. and FEBVAY, G. 1993. Protein toxicity to aphids: An in vitro test on Acyrthosiphon pisum. Entomol. Exp. Appl. 67:149–160.

    Google Scholar 

  • RAHBE, Y., SAUVION, N., FEBVAY, G., PEUMANS, W. J., ANGHARAD, M., and GATEHOUSE, R. 1995. Toxicity of lectins and processing of ingested proteins in the pea aphid Acyrthosiphon pisum. Entomol. Exp. Appl. 76:143–155.

    Google Scholar 

  • REINBOTHE, S., MOLLENHAUER, B., and REINBOTHE, C. 1994. JIPs and RIPs: The regulation of plant gene expression by jasmonates in response to environmental cues and pathogens. Plant Cell 1994:1197–1209.

    Google Scholar 

  • SRIVASTAVA, P. N. 1987. Nutritional Physiology, pp. 99–121, in A. K. Minks and P. Harrewijn (eds.). Aphids, Their Biology, Natural Enemies and Control. Elsevier Science Publishers, Amsterdam, The Netherlands

    Google Scholar 

  • SUE, M., ISHIHARA, A., and IWAMURA, H. 2000. Purification and characterization of a hydroxamic acid glycoside β-glucosidase from wheat (Triticum aestivum) seedlings. Planta 210:432–438.

    PubMed  Google Scholar 

  • THACKRAY, D. J., WRATTEN, S. D., EDWARDS, P. J., and NIEMEYER, H. M. 1990. Resistance to the aphids Sitobion avenae and Rhopalosiphum padi in Gramineae in relation to hydroxamic acid levels. Ann. Appl. Biol. 116:573–582.

    Google Scholar 

  • TJALLINGII, W. F. 1995. Stylet penetration by Homoptera: Electrical signals from the depth of plant tissues, pp. 49–58 in H. M. Niemeyer (ed.). Techniques in Plant-Insect Interactions and Biopesticides. Proceedings, IFS Workshop on Chemical Ecology. Santiago, Chile.

  • TJALLINGII, W. F. and HOGEN ESCH, TH. 1993. Fine structure of aphid stylet routes in plant tissues in correlation with EPG signals. Physiol. Entomol. 18:317–328.

    Google Scholar 

  • VISSER, J. H., PIRON, P. G. M., and HARDIE, J. 1996. The aphids' peripheral perception of plant volatiles. Entomol. Exp. Appl. 80:35–38.

    Google Scholar 

  • WOODWARD, M. D., CORCUERA, L. J., HEGELSON, J. P., and UPPER, CH. D. 1978. Decomposition of 2,4-dihydroxy-7-methoxy-2H1,4-benzoxazin-(4H)-one in aqueous solutions. Plant Physiol. 61:796–802.

    Google Scholar 

  • ZUNIGA, G. E. and MASSARDO, F. 1991. Hydroxamic acid content in undifferentiated and differentiated tissue of wheat. Phytochemistry 30:3281–3283.

    Google Scholar 

  • ZUNIGA, G. E., ARGANDONA, V. H., NIEMEYER, H. M., and CORCUERA, L. J. 1983. Hydroxamic acid content in wild and cultivated Gramineae. Phytochemistry 22:2665–2668.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slesak, E., Slesak, M. & Gabrys, B. Effect of Methyl Jasmonate on Hydroxamic Acid Content, Protease Activity, and Bird Cherry–Oat Aphid Rhopalosiphum padi (L.) Probing Behavior. J Chem Ecol 27, 2529–2543 (2001). https://doi.org/10.1023/A:1013635717049

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013635717049

Navigation