Skip to main content
Log in

Mutual Interdependence of Partitions Functions in Vicinity T g of Transition

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The solid—liquid transition is described by use of the model incorporating the non-linear interactive oscillators. The individual non-linear oscillators are formed from the mechanical units of about the monomer size and produce the vibrations on the lower amplitude level, for the solid phase, either in amorphous or in crystal-like form. As the temperature starts to overpass the Vogel's temperature, the vibrations of individual units are big enough to cause the permanent displacements of the individual vibrating particles; the material starts to flow and the process of diffusion begins as well. As the temperature is passing through T g vicinity, the large mechanical heterogeneity's start to appear as the small percentage of oscillators enlarge their amplitude of vibrations enormously and act as the local stress perturbations centers. These centers are responsible for the destruction of original matrixes and the sharp onset of fluidity and diffusion takes place. The upper amplitude of vibration motion is the basic property of a liquid state. The whole system of vibrations in matrix is described by use of techniques of deterministic chaos theories. It is shown as well, how the mutual interplay of the partition functions (vibration and cohesive), plays the important role in transition from liquid to solid states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Heuer and H. W. Spiess, J. Non-Cryst. Solids, 176 (1994) 294.

    Google Scholar 

  2. W. A. P. Luck, Angew Chemie, 91 (1979) 408.

    Google Scholar 

  3. W. A. P. Luck, In: P. L. Huyskens (Ed), Intermolecular Forces, Springer-Verlag, Berlin 1991, p. 55.

    Google Scholar 

  4. W. A. P. Luck and W. Ditter, Tetrahedron, 27 (1971) 201., 284.

    Google Scholar 

  5. C. Kittel, Intoduction to Solid State Physics. 3rd ed. Wiley, New York 1961, pp. 184, 195.

    Google Scholar 

  6. P. Debye, Annalen der Physik, 39 (1912) 789.

    Google Scholar 

  7. G. A. Astarita, An Introduction to Non-linear Continuum Thermodynamics, Soceta Editrice di Chimica, Milano, Italy 1979.

    Google Scholar 

  8. E. Gruneissen, Annalen der Physik, 39 (1912) 257.

    Google Scholar 

  9. V. V. Tarasov, Zhur. Fiz. Chimii, 24 (1950) 111.

    Google Scholar 

  10. V. V. Tarasov, Zhur. Fiz. Chimii, 27 (1953) 1430.

    Google Scholar 

  11. V. V. Tarasov, Dokl. Akademii Nauk SSSR, 100 (1955) 307.

    Google Scholar 

  12. V. V. Tarasov and G. A. Junskij, Zhur. Fiz. Chimii, 39 (1965) 2076.

    Google Scholar 

  13. B. Wunderlich, In: E. Turi (Ed.) Thermal Characterisation of Polymeric Materials (2nd ed), Academic Press, New York 1997, Vol. 1, pp. 205-482.

    Google Scholar 

  14. Z. Chvoj, J. Šesták and J. Třiska, Kinetic Phase Diagrams; Non-Equilibrium Phase Transitions, Elsevier, Amsterdam 1991.

    Google Scholar 

  15. R. W. Gurney, Introduction to Statistical Mechanics, Dower, New York 1966, pp. 66-73, 88-100.

    Google Scholar 

  16. L. Pauling, Phys. Rev., 36 (1930) 430.

    Google Scholar 

  17. P. W. Anderson, B. Halperin and C. A. Varma, Phil. Mag., 25 (1972) 1.

    Google Scholar 

  18. V. G. Karpov, M. I. Klinger and F. N. Ignatev, Zhur. Exp. and Teor. Phys., 84 (1984) 760.

    Google Scholar 

  19. T. H. Haseda, A. Otsubo and E. Kanda, Sci. Rep. Res. Inst.Tohoku ASEDA Univ. Sev. A., 2 (1950) 16.

    Google Scholar 

  20. U. Ueda, New Approaches to Non-linear Dynamics. S.I.A.M., Philadelphia 1980.

    Google Scholar 

  21. M. Tabor, Chaos and Integrability in Non-linear Dynamics, John Wiley and Sons, New York 1989.

    Google Scholar 

  22. H. O. Peitgen, H. Jürgens and D. Saupe, Chaos and Fractals, New Frontiers of Science, Springer-Verlag, New York 1992.

    Google Scholar 

  23. J. Bartoš, Colloid Polym. Sci., 274 (1996) 14.

    Google Scholar 

  24. J. Bartoš, P. Bandžuch, O. Šauša, K. Krištiaková, J. Krištiak, T. Kanaya and W. Jenniger, Macromolecules, 30 (1997) 6906.

    Google Scholar 

  25. Y. C. Jean, Microchem. J., 42 (1990) 72.

    Google Scholar 

  26. Y. C. Jean, Macromolecules, 29 (1996) 5756.

    Google Scholar 

  27. Y. C. Jean, Q. Deng and T. T. Nguyen, Macromolecules, 28 (1995) 8840.

    Google Scholar 

  28. S. Glasstone, K. J. Laidler and H. Eyring, The Theory of Rate Processes, McGraw-Hill Book Company, New York 1941.

    Google Scholar 

  29. R. E. Powell, W. E. Roseveare and H. Eyring, Ind. Eng. Chem., 33 (1941) 430.

    Google Scholar 

  30. H. J. Pain, The Physics of Vibrations and Waves, John Wiley and Sons, New York 1997.

    Google Scholar 

  31. O. E. Rössler, Phys. Lett., 57A (1976) 397.

    Google Scholar 

  32. B. B. Edelstein, J. Theor. Biol., 29 (1970) 57.

    Google Scholar 

  33. G. Nicolis and I. Prigogine, Self Organization in Non-Equilibrium Systems, John Wiley and Sons, New York 1977.

    Google Scholar 

  34. B. Hlaváček, V. Křesálek and J. Souček, J. Chem. Phys., 107 (1997) 4658.

    Google Scholar 

  35. B. Hlaváček, J. Shánělová and J. Málek, Mechanics of Time Dependent Materials, 3 (1999) 351.

    Google Scholar 

  36. F. Bueche, Physical Properties of Polymers, Inter. Sci. Publ. New York-London 1962, p. 106.

    Google Scholar 

  37. F. A. Lindemann, Phys. Zeits., 11 (1910) 609.

    Google Scholar 

  38. H. Kanno, J. Non. Cryst. Solids, 44 (1981) 409.

    Google Scholar 

  39. J. M. Ziman, Principles of the Theory of Solids, Cambridge University Press, Cambridge, England 1964, p. 82.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hlaváček, B., Šesták, J. & Mareš, J.J. Mutual Interdependence of Partitions Functions in Vicinity T g of Transition. Journal of Thermal Analysis and Calorimetry 67, 239–248 (2002). https://doi.org/10.1023/A:1013770821446

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1013770821446

Navigation