Skip to main content
Log in

A posteriori error control for finite element approximations of elliptic eigenvalue problems

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

We develop a new approach to a posteriori error estimation for Galerkin finite element approximations of symmetric and nonsymmetric elliptic eigenvalue problems. The idea is to embed the eigenvalue approximation into the general framework of Galerkin methods for nonlinear variational equations. In this context residual-based a posteriori error representations are available with explicitly given remainder terms. The careful evaluation of these error representations for the concrete situation of an eigenvalue problem results in a posteriori error estimates for the approximations of eigenvalues as well as eigenfunctions. These suggest local error indicators that are used in the mesh refinement process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Babuška and J. Osborn, A posteriori error estimates for the finite element method, Internat. J. Numer. Methods Engrg. 12 (1978) 1597–1615.

    Google Scholar 

  2. I. Babuška and J.E. Osborn, Eigenvalue problems, in: eds. P.G. Ciarlet and J.L. Lions, Handbook of Numerical Analysis, Vol. 2, Chapter Finite Element Methods (Part 1) (Elsevier, Paris, 1991) pp. 641–792.

    Google Scholar 

  3. I. Babuška and T. Tsuchiya, A posteriori error estimates of finite element solutions of parametrized nonlinear equations, Technical report, University of Maryland (1992).

  4. R. Becker and R. Rannacher, Weighted a posteriori error control in FE methods, in: Proc. of ENUMATH' 97, eds. H.G. Bock et al. (World Scientific, Singapore, 1995) pp. 609–637.

    Google Scholar 

  5. R. Becker and R. Rannacher, A feed-back approach to error control in finite element methods: basic analysis and examples, East-West J. Numer. Math. 4 (1996) 237–264.

    Google Scholar 

  6. R. Becker and R. Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, in: Acta Numerica 2001, ed. A. Iserles (Cambridge Univ. Press, Cambridge, 2001) pp. 1–102.

    Google Scholar 

  7. J.H. Bramble and J.E. Osborn, Rate of convergence estimates for nonselfadjoint eigenvalue approximations, Math. Comp. 27 (1973) 525–545.

    Google Scholar 

  8. S.C. Brenner and R.L. Scott, The Mathematical Theory of Finite Element Methods (Springer, Berlin, 1994).

    Google Scholar 

  9. P.G. Ciarlet, Finite Element Methods for Elliptic Problems (North-Holland, Amsterdam, 1978).

    Google Scholar 

  10. K. Eriksson, D. Estep, P. Hansbo and C. Johnson, Introduction to adaptive methods for differential equations, in: Acta Numerica 1995, ed. A. Iserles (Cambridge Univ. Press, 1995) pp. 105–158.

  11. V. Heuveline and C. Bertsch, On multigrid methods for the eigenvalue computation of non-selfadjoint elliptic operators, East-West J. Numer. Math. 8 (2000) 275–297.

    Google Scholar 

  12. C. Johnson, A new paradigm for adaptive finite element methods, in: Proc. of MAFELAP '93, ed. J. Whiteman (Wiley, New York, 1994) pp. 105–120.

    Google Scholar 

  13. T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1966).

    Google Scholar 

  14. M.G. Larson, A posteriori and a priori error analysis for finite element approximations of self-adjoint elliptic eigenvalue problems, SIAM J. Numer. Anal. 38 (2000) 608–625.

    Google Scholar 

  15. C. Nystedt, A priori and a posteriori error estimates and adaptive finite element methods for a model eigenvalue problem, Technical Report No. 1995-05, Department of Mathematics, Chalmers University of Technology (1995).

  16. J.E. Osborn, Spectral approximation for compact operators, Math. Comp. 29 (July 1975) 712–725.

    Google Scholar 

  17. R. Verfürth, A Review of a Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques (Wiley/Teubner, New York/Stuttgart, 1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuveline, V., Rannacher, R. A posteriori error control for finite element approximations of elliptic eigenvalue problems. Advances in Computational Mathematics 15, 107–138 (2001). https://doi.org/10.1023/A:1014291224961

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014291224961

Navigation