Skip to main content
Log in

Phosphonates and Their Degradation by Microorganisms

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

Phosphonates are a class of organophosphorus compounds characterized by a chemically stable carbon-to-phosphorus (C–P) bond. Wide occurrence of phosphonates among xenobiotics polluting the environment has aroused interest in pathways and mechanisms of their biodegradation. Only procaryotic microorganisms and the lower eucaryotes are capable of phosphonate biodegradation via several pathways. Destruction of the non activated C–P bond by the C–P lyase pathway is of fundamental importance, and understanding of the process is a basic problem of biochemistry and physiology of microorganisms. This review offers analysis of available data on phosphonate degrading microorganisms, degradation pathways, and genetic and physiological regulation of this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Freedman, L. D., and Doak, G. O. (1957) Chem. Rev., 57, 479–523.

    Google Scholar 

  2. Murai, T., and Tomizawa, C. (1976) J. Environ. Sci. Health, B11, 185–197.

    Google Scholar 

  3. Horiguchi, M., and Kandatsu, M. (1959) Nature, 184, 901–902.

    PubMed  Google Scholar 

  4. Baer, E., and Stanacev, N. Z. (1964) J. Biol. Chem., 239, 3209.

    PubMed  Google Scholar 

  5. Kittredge, J. S., and Roberts, E. (1969) Science, 164, 37–42.

    PubMed  Google Scholar 

  6. Wassef, M. K., and Hendrix, J. W. (1976) Biochim. Biophys. Acta, 486, 172–178.

    PubMed  Google Scholar 

  7. Hasegawa, S., Tamari, M., and Kametaka, M. (1976) J. Biochem. (Tokyo), 80, 531–535.

    Google Scholar 

  8. Tan, S. A., and Tan, L. G. (1989) Clin. Physiol. Biochem., 7, 303–309.

    PubMed  Google Scholar 

  9. Smith, J. D., and Lepak, N. M. (1982) Arch. Biochem. Biophys., 213, 565–572.

    PubMed  Google Scholar 

  10. Korn, E. D., Dearborn, D. G., Fales, H. M., and Sokolovski, E. A. (1973) J. Biol. Chem., 248, 2257–2259.

    PubMed  Google Scholar 

  11. Hendlin, D., Stapley, E. O., Jackson, M., Wallick, H., Miller, A. K., Wolf, F. J., Miller, T. W., Chaiet, L., Kanan, F. M., Foltz, E. L., Woodruff, H. B., Mata, J., Hernandez, S., and Mochales, S. (1969) Science, 166, 122–123.

    PubMed  Google Scholar 

  12. Bayer, E., Gugel, K. H., Hagele, K., Hagenmaier, H., Jessipow, S., Konig, W. A., and Zahner, Z. (1972) Helvetica Chimica Acta, 55, 224–239.

    PubMed  Google Scholar 

  13. Calanduoni, J. A., and Villafranca, J. J. (1986) Bioorg. Chem., 14, 163–169.

    Google Scholar 

  14. Lee, P. J., Joy, K. W., Ramos, J. L., and Guerrero, M. G. (1984) Phytochemistry, 23, 1–6.

    Google Scholar 

  15. Siedel, H. M., Freeman, S., Seto, H., and Knowles, J. R. (1988) Nature, 335, 457–458.

    PubMed  Google Scholar 

  16. Hilderbrand, R. L., and Henderson, T. G. (1983) in The Role of Phosphonates in Living Systems (Hilderbrand, R. L., ed.) CRC Press, Boca Raton, Florida, pp. 5–30.

    Google Scholar 

  17. De Graaf, R. M., Visscher, J., and Schwartz, A. W. (1997) Mol. Evol., 44, 237–241.

    Google Scholar 

  18. De Graaf, R. M., Visscher, J., and Schwartz, A. W. (1998) Origins Life Evol. Biosphere, 28, 271–282.

    Google Scholar 

  19. Glindemann, D., De Graaf, R. M., and Schwartz, A. W. (1999) Origins Life Evol. Biosphere, 29, 555–561.

    Google Scholar 

  20. De Graaf, R. M., and Schwartz, A. W. (2000) Origins Life Evol. Biosphere, 30, 405–410.

    Google Scholar 

  21. Cooper, G. W., Onwo, W. M., and Cronin, J. R. (1992) Geochim. Cosmochim. Acta, 56, 4109–4115.

    PubMed  Google Scholar 

  22. Nifantyev, E. E. (1971) Chemistry of Organophosphorus Compounds [in Russian], MGU Publishers, Moscow.

    Google Scholar 

  23. Fest, C., and Schmidt, K.-J. (1988) Organophosphorus Pesticides, Springer-Verlag, Berlin.

    Google Scholar 

  24. Egli, T. (1988) Microbiol. Sci., 5, 36–41.

    PubMed  Google Scholar 

  25. Tyhach, R. J., Engel, R., and Tropp, B. (1976) J. Biol. Chem., 251, 6717–6723.

    PubMed  Google Scholar 

  26. Viktorova, L. S., Arzumanov, A. A., Shirokova, E. A., Yasko, M. V., Aleksandrova, L. A., Shipitsyn, A. V., Skoblov, A. Yu., and Krayevsky, A. A. (1998) Mol. Biol. (Moscow), 32, 162–171.

    Google Scholar 

  27. Fleisch, W. (1991) Drugs, 42, 919–944.

    PubMed  Google Scholar 

  28. Jaworski, E. G. (1972) J. Agric. Food Chem., 20, 1195–1198.

    Google Scholar 

  29. Munro, N. B., Talmage, S. S., Griffin, G. D., Waters, L. C., Watson, A. P., King, J. F., and Hauschild, V. (1999) Environ. Health Perspect., 107, 933–974.

    PubMed  Google Scholar 

  30. Small, M. J. (1984) Tech Rpt8304; AD A149515. Fort Detrick, MD: US Army Medical Bioengineering Research and Development Laboratory.

  31. Williams, R. T., Miller, W. R., III, and MacGillivray, A. R. (1987) CRDEC-CR-87103: NTIS AD-A184 959/5. Aberdeen Proving Ground, MD: US Army Armament Munitions Chemical Command, Chemical Research, Development and Engineering Center.

  32. Zeleznick, L. D., Myers, T. C., and Titchener, E. B. (1963) Biochim. Biophys. Acta, 78, 546–547.

    PubMed  Google Scholar 

  33. Cook, A. M., Daughton, C. G., and Alexander, M. (1978) J. Bacteriol., 133, 85–90.

    PubMed  Google Scholar 

  34. Harkness, D. R. (1966) J. Bacteriol., 92, 623–627.

    PubMed  Google Scholar 

  35. Metcalf, W. W., and Wolfe, R. S. (1998) J. Bacteriol., 180, 5547–5558.

    PubMed  Google Scholar 

  36. Metcalf, W. W., and Wanner, B. L. (1991) J. Bacteriol., 173, 587–600.

    PubMed  Google Scholar 

  37. Metcalf, W. W., and Wanner, B. L. (1993) J. Bacteriol., 175, 3430–3442.

    PubMed  Google Scholar 

  38. Imazu, K., Tanaka, S., Kuroda, A., Anbe, Y., Kato, J., and Ohtake, H. (1998) Appl. Environ. Microbiol., 64, 3754–3758.

    PubMed  Google Scholar 

  39. Quinn, J. P., Peden, J. M. M., and Dick, R. E. (1989) Appl. Microbiol. Biotechnol., 31, 283–287.

    Google Scholar 

  40. Schowanek, D., and Verstraete, W. (1990) Appl. Environ. Microbiol., 56, 895–903.

    PubMed  Google Scholar 

  41. Wackett, L. P., Shames, S. L., Venditti, C. P., and Walsh, C. T. (1987) J. Bacteriol., 169, 710–717.

    PubMed  Google Scholar 

  42. Pipke, R., Schulz, A., and Amrhein, N. (1987) Appl. Environ. Microbiol., 53, 974–978.

    Google Scholar 

  43. McGrath, J. W., Hammerschmidt, F., and Quinn, J. P. (1998) Appl. Environ. Microbiol., 64, 356–358.

    PubMed  Google Scholar 

  44. La Nauze, J. M., Rosenberg, H., and Shaw, D. C. (1970) Biochim. Biophys. Acta, 212, 332–350.

    PubMed  Google Scholar 

  45. McMullan, G., and Quinn, J. P. (1994) J. Bacteriol., 176, 320–324.

    PubMed  Google Scholar 

  46. Ternan, N. G., and Quinn, J. P. (1998) Biochem. Biophys. Res. Commun., 248, 378–381.

    PubMed  Google Scholar 

  47. Obojska, A., Lejczak, B., and Kubrak, M. (1999) Appl. Microbiol. Biotechnol., 51, 872–876.

    PubMed  Google Scholar 

  48. Bode, R., and Birnbaum, D. (1989) Biochem. Physiol. Pflanzen., 184, 163–170.

    Google Scholar 

  49. Ternan, N. G., and McMullan, G. (2000) FEMS Microbiol. Lett., 184, 237–400.

    PubMed  Google Scholar 

  50. Zboinska, E., Maliszewska, I., Lejczak, B., and Kafarski, P. (1992) Lett. Appl. Microbiol., 15, 269–272.

    Google Scholar 

  51. Bujacz, B., Wieczorek, P., Krzysko-Lupicka, T., Golab, Z., Lejczak, B., and Kafarski, P. (1995) Appl. Environ. Microbiol., 61, 2905–2910.

    Google Scholar 

  52. Krzysko-Lupicka, T., Strof, W., Kubs, K., Skorupa, M., Wieczorek, P., Lejczak, B., and Kafarski, P. (1997) Appl. Microbiol. Biotechnol., 48, 549–552.

    PubMed  Google Scholar 

  53. Smith, J. D. (1983) in The Role of Phosphonates in Living Systems (Hilderbrand, R. L., ed.) CRC Press, Boca Raton, pp. 31–35.

    Google Scholar 

  54. Ternan, N. G., and Quinn, J. P. (1998) Syst. Appl. Microbiol., 21, 346–352.

    PubMed  Google Scholar 

  55. Ternan, N. G., McGraff, J. W., McMullan, G., and Quinn, J. P. (1998) World J. Microbiol. Biotechnol., 14, 635–647.

    Google Scholar 

  56. Bowman, E. D., McQueeny, M. S., Barry, R. J., and Dunaway-Mariano, D. (1990) Biochemistry, 29, 7059–7063.

    PubMed  Google Scholar 

  57. Nakashita, H., Watanabe, K., Hara, O., Hidaka, T., and Seto, H. (1997) J. Antibiotics, 50, 212–219.

    Google Scholar 

  58. Nakashita, H., Kozuka, K., Hidaka, T., Hara, O., and Seto, H. (2000) Biochim. Biophys. Acta, 1490, 159–162.

    PubMed  Google Scholar 

  59. Hidaka, T., Imai, S., Hara, O., Anzai, H., Murakami, T., Nagaoka, K., and Seto, H. (1990) J. Bacteriol., 172, 3066–3072.

    PubMed  Google Scholar 

  60. Pollack, S. J., Freeman, S., Pompliano, D. L., and Knowles, J. R. (1992) Eur. J. Biochem., 209, 735–743.

    PubMed  Google Scholar 

  61. Kamigiri, K., Hidaka, T., Imai, S., Murakami, T., and Seto, H. (1992) J. Antibiotics, 45, 781–787.

    Google Scholar 

  62. Nakashita, H., Hidaka, T., Kuzuyama, T., and Seto, H. (1995) Gene, 158, 149–150.

    PubMed  Google Scholar 

  63. Nakashita, H., Shimazu, A., Hidaka, T., and Seto, H. (1992) J. Bacteriol., 174, 6857–6861.

    PubMed  Google Scholar 

  64. Kitteredge, J. S., Roberts, E., and Simonsen, D. G. (1962) Biochemistry, 1, 624–628.

    PubMed  Google Scholar 

  65. Dumora, C., Lacoste, A.-M., and Cassaigne, A. (1983) Eur. J. Biochem., 133, 119–125.

    PubMed  Google Scholar 

  66. McMullan, G., Harrington, F., and Quinn, J. P. (1992) Appl. Environ. Microbiol., 58, 1364–1366.

    Google Scholar 

  67. Garen, A., and Levinthal, C. (1960) Biochim. Biophys. Acta, 38, 470–483.

    PubMed  Google Scholar 

  68. Jiang, W., Metcalf, W. W., Lee, K. S., and Wanner, B. L. (1995) J. Bacteriol., 177, 6411–6421.

    PubMed  Google Scholar 

  69. Baker, A. S., Ciocci, M. J., Metcalf, W. W., Kim, J., Babbitt, P. C., Wanner, B. L., Martin, B. M., and Dunaway-Mariano, D. (1998) Biochemistry, 37, 9305–9315.

    PubMed  Google Scholar 

  70. La Nauze, J. M., Coggins, J. R., and Dixon, H. B. F. (1977) Biochem. J., 165, 409–411.

    PubMed  Google Scholar 

  71. Morais, M. C., Zhang, W., Baker, A. S., Zhang, G., Dunaway-Mariano, D., and Allen, K. N. (2000) Biochemistry, 39, 10385–10396.

    PubMed  Google Scholar 

  72. Lee, K. S., Metcalf, W. W., and Wanner, B. L. (1992) J. Bacteriol., 174, 2501–2510.

    PubMed  Google Scholar 

  73. Kulakova, A. N., Kulakov, L. A., and Quinn, J. P. (1997) Gene, 195, 49–53.

    PubMed  Google Scholar 

  74. McGrath, J. W., Wisdom, G. B., McMullan, G., Larkin, M. J., and Quinn, J. P. (1995) Eur. J. Biochem., 234, 225–230.

    PubMed  Google Scholar 

  75. Kulakova, A. N., Kulakov, L. A., Akulenko, N. V., Ksenzenko, V. N., Hamilton, J. T., and Quinn, J. P. (2001) J. Bacteriol., 183, 3268–3275.

    PubMed  Google Scholar 

  76. Ternan, N. G., Hamilton, J. T., and Quinn, J. P. (2000) Arch. Microbiol., 173, 35–41.

    PubMed  Google Scholar 

  77. Nakashita, H., Shimazu, A., Hidaka, T., and Seto, H. (1992) J. Bacteriol., 174, 6857–6861.

    PubMed  Google Scholar 

  78. Murata, K., Higaki, N., and Kimura, A. (1988) Biochem. Biophys. Res. Commun., 157, 190–195.

    PubMed  Google Scholar 

  79. Murata, K., Higaki, N., and Kimura, A. (1989) J. Bacteriol., 171, 4504–4506.

    PubMed  Google Scholar 

  80. McMullan, G., Watkins, R., Harper, D. B., and Quinn, J. P. (1991) Biochem. Int., 25, 271–279.

    PubMed  Google Scholar 

  81. Cordeiro, M. L., Pompliano, D. L., and Frost, J. W. (1986) J. Am. Chem. Soc., 108, 332–334.

    Google Scholar 

  82. Frost, J. W., Loo, S., Cordeiro, M. L., and Li, D. (1987) J. Am. Chem. Soc., 109, 2166–2171.

    Google Scholar 

  83. Shames, S. L., Wackett, L. P., LaBarge, M. S., Kuczkowski, R. L., and Walsh, C. T. (1987) Bioorg. Chem., 15, 366–373.

    Google Scholar 

  84. Avila, L. Z., Draths, K. M., and Frost, J. W. (1991) Bioorg. Med. Chem. Lett., 1, 51–54.

    Google Scholar 

  85. Pipke, R., and Amrhein, N. (1988) Appl. Environ. Microbiol., 54, 1293–1296.

    Google Scholar 

  86. Metcalf, W. W., Steed, P. M., and Wanner, B. L. (1990) J. Bacteriol., 172, 3191–3200.

    PubMed  Google Scholar 

  87. Wanner, B. L., and Boline, J. A. (1990) J. Bacteriol., 172, 1186–1196.

    PubMed  Google Scholar 

  88. Wanner, B. L., and Metcalf, W. W. (1992) FEMS Microbiol. Lett., 79, 133–139.

    PubMed  Google Scholar 

  89. Wackett, L. P., Wanner, B. L., Venditti, C. P., and Walsh, C. T. (1987) J. Bacteriol., 169, 1753–1756.

    PubMed  Google Scholar 

  90. Chen, C. M., Ye, Q. Z., Zhu, Z. M., Wanner, B. L., and Walsh, C. T. (1990) J. Biol. Chem., 265, 4461–4471.

    PubMed  Google Scholar 

  91. Bardin, S., Dan, S., Osteras, M., and Finan, T. M. (1996) J. Bacteriol., 178, 4540–4547.

    PubMed  Google Scholar 

  92. Surin, B. P., Rosenberg, H., and Cox, G. B. (1985) J. Bacteriol., 161, 189–198.

    PubMed  Google Scholar 

  93. Parker, G. F., Higgins, T. P., Hawkes, T., and Robson, R. L. (1999) J. Bacteriol., 181, 389–395.

    PubMed  Google Scholar 

  94. Kertesz, M., Elgorriga, A., and Amrhein, N. (1991) Biodegradation, 2, 53–59.

    PubMed  Google Scholar 

  95. Stevens, J. B., de Luca, N. G., Beringer, J. E., Ringer, J. P., Yeoman, K. H., and Johnston, A. W. (2000) Mol. Plant Microbe Interact., 13, 228–231.

    PubMed  Google Scholar 

  96. Kaneko, T., Nakamura, Y., Sato, S., Asamizu, E., Kato, T., Sasamoto, S., Watanabe, A., Idesawa, K., Ishikawa, A., Kawashima, K., Kimura, T., Kishida, Y., Kiyokawa, C., Kohara, M., Matsumoto, M., Matsuno, A., Mochizuki, Y., Nakayama, S., Nakazaki, N., Shimpo, S., Sugimoto, M., Takeuchi, C., Yamada, M., and Tabata, S. (2000) DNA Res., 7, 331–338.

    PubMed  Google Scholar 

  97. Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S., Hufnagle, W. O., Kowalik, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G. K., Wu, Z., and Paulsen, I. T. (2000) Nature, 406, 959–964.

    PubMed  Google Scholar 

  98. Ohtake, H., Wu, H., Imazu, K., Anbe, Y., Kato, J., and Kuroda, A. (1994) Resour. Conserv. Recycl., 18, 125–134.

    Google Scholar 

  99. Makino, K., Shinagawa, H., Amemura, M., and Nakata, A. (1986) J. Mol. Biol., 190, 37–44.

    PubMed  Google Scholar 

  100. Wanner, B. L. (1990) in The Molecular Basis of Bacterial Metabolism (Hauska, G., and Thauer, R., eds.) Springer-Verlag, Heidelberg, pp. 152–163.

    Google Scholar 

  101. Steed, P. M., and Wanner, B. L. (1993) J. Bacteriol., 175, 6797–6809.

    PubMed  Google Scholar 

  102. Matys, S. V., Laurinavichus, K. S., Krupyanko, V. I., and Nesmeyanova, M. A. (2001) Process Biochem., 36, 821–827.

    Google Scholar 

  103. Yakovleva, G. M., Kim, S. K., and Wanner, B. L. (1998) Appl. Microbiol. Biotechnol., 49, 573–578.

    PubMed  Google Scholar 

  104. Wanner, B. L. (1993) J. Cell Biochem., 51, 47–54.

    PubMed  Google Scholar 

  105. Hulett, F. M., Sun, G., and Liu, W. (1994) in Phosphate in Microorganisms: Cellular and Molecular Biology (Torriani-Gorrini, A., Yagil, E., and Silver, S., eds.) ASM Press, Washington, pp. 50–54.

    Google Scholar 

  106. Torriani, A., and Ludtke, D. N. (1985) in The Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology (Neitdhardt, F. C., Ingraham, J. L., Low, K. B., Magasanik, B., Schaechter, M., and Umbarger, H. E., eds.) Vol. 2, ASM Press, Washington, pp. 1326–1333.

    Google Scholar 

  107. Wanner, B. L. (1992) J. Bacteriol., 174, 2053–2058.

    PubMed  Google Scholar 

  108. Amemura, M., Makino, K., Shinagawa, A., Kobayashi, A., and Nakato, A. (1990) J. Mol. Biol., 184, 241–259.

    Google Scholar 

  109. Wanner, B. L., and Wilmes-Riesenberg, M. R. (1992) J. Bacteriol., 174, 2124–2130.

    PubMed  Google Scholar 

  110. Kim, S. K., Wilmes-Riesenberg, M. R., and Wanner, B. L. (1996) Mol. Microbiol., 22, 135–147.

    PubMed  Google Scholar 

  111. Allen, J. G., Atherton, F. R., Hall, M. J., Hassall, C. H., Holmes, S. W., Lambert, R. W., Nisbet, L. J., and Ringrose, P. S. (1978) Nature, 272, 56–58.

    PubMed  Google Scholar 

  112. Radicella, J. P., Park, P. U., and Fox, M. S. (1995) Science, 268, 418–420.

    PubMed  Google Scholar 

  113. Makino, K., Kim, S.-K., Shinagawa, H., Amemura, M., and Nakata, A. (1991) J. Bacteriol., 173, 2665–2672.

    PubMed  Google Scholar 

  114. Matys, S. V., Laurinavichius, K. S., and Nesmeyanova, M. A. (1996) Mikrobiologiya, 65, 481–487.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Nesmeyanova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kononova, S.V., Nesmeyanova, M.A. Phosphonates and Their Degradation by Microorganisms. Biochemistry (Moscow) 67, 184–195 (2002). https://doi.org/10.1023/A:1014409929875

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014409929875

Navigation