Skip to main content
Log in

Fundamental Effects of Particle Morphology on Lung Delivery: Predictions of Stokes' Law and the Particular Relevance to Dry Powder Inhaler Formulation and Development

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Key factors that contribute to the aerodynamic properties of aerosol particles are found in Stokes' law. These factors may be monitored or controlled to optimize drug delivery to the lungs. Predictions of the aerodynamic behavior of therapeutic aerosols can be derived in terms of the physical implications of particle slip, shape and density. The manner in which each of these properties have been used or studied by pharmaceutical scientists to improve lung delivery of drugs is readily understood in the context of aerosol physics. Additional improvement upon current aerosol delivery of particulates may be predicted by further theoretical scrutiny.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Hickey and C. A. Dunbar. A New Millennium for Inhaler Technology. Pharm. Tech. 21:116–125 (1997).

    Google Scholar 

  2. T. M. Crowder, M. D. Louey, V. V. Sethuraman, H. D. C. Smyth, and A. J. Hickey. 2001: An Odyssey in Inhaler Formulations and Design. Pharm. Tech. 25:99–113 (2001).

    Google Scholar 

  3. D. Prime, P. J. Atkins, A. Slater, and B. Sumby. Review of Dry Powder Inhalers. Adv. Drug Deliver. Rev. 26:51–58 (1997).

    Google Scholar 

  4. A. R. Clark. Medical Aerosol Inhalers: Past, Present, and Future. Aerosol Sci. Tech. 22:374–391 (1995).

    Google Scholar 

  5. I. Colbeck. Dynamic shape factors of fractal clusters of carbonaceous smoke. J. Aerosol Sci. 21:S43–S46 (1990).

    Google Scholar 

  6. K. A. Fults, I. F. Miller, and A. J. Hickey. Effect of Particle Morphology on Emitted Dose of Fatty Acid-treated Disodium Cromoglycate Powder Aerosols. Pharm. Dev. Technol. 2:67–79 (1997).

    Google Scholar 

  7. P. C. Reist. Aerosol Science and Technology. McGraw-Hill, New York, 1993.

    Google Scholar 

  8. H.-K. Chan and I. Gonda. Aerodynamic Properties of Elongated Particles of Cromoglycic Acid. J. Aerosol Sci. 20:157 (1989).

    Google Scholar 

  9. D. A. Edwards, A. Ben-Jebria, and R. Langer. Recent Advances in Pulmonary Drug Delivery Using Large, Porous Inhaled Particles. J. App. Physiology 85:379–385 (1998).

    Google Scholar 

  10. D. A. Edwards, D. Chen, J. Wang, and A. Ben-Jebria. Controlled-Release Inhalation Aerosols. Respiratory Drug Deliver, VI.R.N. Dalby, P. R. Byron, S. J. Farr, Interpharm Press, Inc. Englewood, Colorado, 187–192 (1998)

    Google Scholar 

  11. D. A. Edwards, J. Hanes, G. Caponetti, J. Hrkach, A. Ben-Jebria, M. L. Eskew, J. Mintzes, D. Deaver, N. Lotan, and R. Langer. Large porous particles for pulmonary drug delivery. Science 276: 1868–1871 (1997).

    Google Scholar 

  12. C. N. Davies. Definitive equations for the fluid resistance of spheres. Pro. Phys. Soc. 57:259–270 (1945).

    Google Scholar 

  13. W. C. Hinds. Aerosol Technology: Properties, behavior and measurement of airborne particles. Wiley, New York, 1999.

    Google Scholar 

  14. S. Friedlander. Smoke, Dust and Haze: Fundamentals of Aerosol Dynamic. Oxford University Press, New York, 1977.

    Google Scholar 

  15. K. Willeke and P. Baron. Aerosol Measurement: Principles, Techniques and Applications. Wiley, New York, 1997.

    Google Scholar 

  16. O. Moss. Shape factors for airborne particles. Am. Ind. Hyg. Assoc. J. 32:221–229 (1971).

    Google Scholar 

  17. W. A. Stöber. A note on the aerodynamic diameter and the mobility of non-spherical aerosol particles. J. Aerosol Sci. 2:453–456 (1971).

    Google Scholar 

  18. D. Leith. Drag on nonspherical object. Aerosol Sci. Tech. 6:153–161 (1987).

    Google Scholar 

  19. T. B. Martonen, K. Bell, R. Phalen, A. Wilson, and A. Ho. Growth rate measurements and deposition modeling of hygroscopic aerosols in human tracheobronchial models. Ann. Occ. Hyg. 26:93–108 (1982).

    Google Scholar 

  20. S. J. Smith and J. A. Bernstein. Therapeutic uses of lung aerosols. In A.J. Hickey (ed.), Inhalation aerosols: Physical and Biologic basis for Therapy, Marcel Dekker, Inc., New York, 1996, pp. 233–269.

    Google Scholar 

  21. A. Li and G. Ahmadi. Computer simulation of particle deposition in the upper tracheobronchial tree. Aerosol Sci. Tech. 23:201–223 (1995).

    Google Scholar 

  22. C. Darquenne, M. Paiva, and G. K. Prisk. Effect of gravity on aerosol dispersion and deposition in the human lung after periods of breath holding. J. App. Physiol. 89:1787–1792 (2000).

    Google Scholar 

  23. J. Heyder, J. Gebhart, G. Rudolf, C. F. Schiller, and W. Stahlhofen. Deposition of particles in the human respiratory tract in the size range 0.005-15 um. J. Aerosol Sci. 17:811–825 (1986).

    Google Scholar 

  24. R. L. Harris and D. A. Fraser. A model for deposition of fibers in the human respiratory system. Am. Ind. Hyg. Assoc. J. 37:73–89 (1976).

    Google Scholar 

  25. T. B. Martonen and D. L. Johnson. Aerodynamic size classification of fibers with aerosol centrifuges. Part. Sci. Technol. 8:37–53 (1990).

    Google Scholar 

  26. S. H. Curry, A. J. Taylor, S. Evans, S. Godfrey, and E. Zeidifard. Disposition of disodium chromoglycate administered in three particle sizes. Brit. J. Clin. Pharm. 2:267–270 (1975).

    Google Scholar 

  27. H.-K. Chan and I. Gonda. J. Aerosol Med. 6:241–249 (1993).

    Google Scholar 

  28. J. Visser. An invited review: Van der Waals and other cohesive forces affecting powder fluidization. Powder Technol. 58:1–10 (1989).

    Google Scholar 

  29. D. L. Johnson, N. A. Esmen, K. D. Carlson, T. A. Pearce, and B. N. Thomas. Aerodynaic behavior of lipid microtubule aerosols. J. Aerosol Sci. 31:181–188 (2000).

    Google Scholar 

  30. I. Balashazy, T. B. Martonen, and W. Hofmann. Fiber deposition in airway bifurcations. J. Aerosol Med. 3:243–260 (1990).

    Google Scholar 

  31. P. E. Morrow. Factors determining hygroscopic aerosol deposition in airways. Physiol. Rev. 66:330–376 (1986).

    Google Scholar 

  32. T. B. Martonen. Analytical model of hygroscopic particle behavior in human airways. Bull. Math. Biol. 44:425–442 (1982).

    Google Scholar 

  33. A. J. Hickey and T. B. Martonen. Behavior of hygroscopic pharmaceutical aerosols and the influence of hydrophobic additives. Pharm. Res. 10:1–7 (1993).

    Google Scholar 

  34. A. J. Hickey, I. Gonda, W. J. Irwin, and F. J. T. Fildes. The effect of hydrophobic coating upon the behavior of a hygroscopic aerosol powder in an environment of controlled temperature and relative humidity. J. Pharm. Sci. 79:1009–1014 (1990).

    Google Scholar 

  35. S. P. Newman, A. Hollingworth, and A. R. Clark. Effect of Different Modes of Inhalation on Drug Delivery from a Dry Powder Inhaler. Int. J. Pharm. 102:127–132 (1994).

    Google Scholar 

  36. H. Steckel and B. W. Müller. In Vitro Evaluation of Dry Powder Inhalers I: Drug Deposition of Commonly Used Devices. Int. J. Pharm. 154:19–29 (1997).

    Google Scholar 

  37. A. H. de Boer, D. Gjaltema, and P. Hagedoorn. Inhalation Characteristics and their Effects on In Vitro Drug Delivery from Dry Powder Inhalers Part 2: Effect of peak flow rate (PFIR) and inspiration time on the in vitro release from three different types of commercial dry powder inhalers. Int. J. Pharm. 138:45–56 (1996).

    Google Scholar 

  38. B. J. Meakin, J. M. Cainey, and P. M. Woodcock. Drug delivery characteristics of Bricanyl Turbohaler dry powder inhalers. Int. J. Pharm. 119:91–102 (1995).

    Google Scholar 

  39. Y. Fukunaga, T. Nishibayashi, M. Odomi, and M. J. Shott. Evaluation of a novel ?-2 agonist dry powder inhaler formulation using the Clickhaler: An initial feasibility study. Respiratory Drug Delivery VII. R. N. Dalby, P. R. Byron, S. J. Farr, J. Peart, Serentec Press, Inc., Raleigh, North Carolina 425–428 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Hickey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crowder, T.M., Rosati, J.A., Schroeter, J.D. et al. Fundamental Effects of Particle Morphology on Lung Delivery: Predictions of Stokes' Law and the Particular Relevance to Dry Powder Inhaler Formulation and Development. Pharm Res 19, 239–245 (2002). https://doi.org/10.1023/A:1014426530935

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014426530935

Navigation