Skip to main content
Log in

Thermodynamic Foundations of Kinetic Theory and Lattice Boltzmann Models for Multiphase Flows

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

This paper demonstrates that thermodynamically consistent lattice Boltzmann models for single-component multiphase flows can be derived from a kinetic equation using both Enskog's theory for dense fluids and mean-field theory for long-range molecular interaction. The lattice Boltzmann models derived this way satisfy the correct mass, momentum, and energy conservation equations. All the thermodynamic variables in these LBM models are consistent. The strengths and weaknesses of previous lattice Boltzmann multiphase models are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. A. K. Gunstensen, D. H. Rothman, S. Zaleski, and G. Zanetti, Lattice Boltzmann model of immiscible fluids, Phys. Rev. A 43:4320 (1991).

    Google Scholar 

  2. J. Buckles, R. Hazlett, S. Chen et al., Flow through porous media using the lattice Boltzmann method, Los Alamos Sci. 22:112 (1994).

    Google Scholar 

  3. N. S. Martys and H. D. Chen, Simulation of multicomponent fluids in complex threedimensional geometries by the lattice Boltzmann method, Phys. Rev. E 53:743 (1996).

    Google Scholar 

  4. W. R. Osborn, E. Orlandini, M. R. Swift, J. M. Yeomans, and J. R. Banavar, Lattice Boltzmann study of hydrodynamic spinodal decomposition, Phys. Rev. Lett. 75:p4031 (1995).

    Google Scholar 

  5. H. D. Chen, B. M Boghosian, P. V. Coveney, and M. Nekovee, A ternary lattice Boltzmann model for amphiphilic fluids, Proc. Royal Soc. of London, Series A 456:p2043 (2000).

    Google Scholar 

  6. X. Y. He, S. Y. Chen, and R. Y. Zhang, A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh-Taylor instability, J. Comput. Phys. 152:642 (1999).

    Google Scholar 

  7. X. Y. He, R. Y. Zhang, S. Y. Chen, and G. D. Doolen, On the Three-Dimensional Rayleigh-Taylor Instability, Phys. Fluids 11:p1143 (1999).

    Google Scholar 

  8. R. Y. Zhang, X. Y. He, G. D. Doolen, and S. Y. Chen, On the surface tension effect on Kelvin-Helmholtz instability, Adv. in Water Resources 24:p461 (2001).

    Google Scholar 

  9. K. Sankaranarayanan, X. Shan, I. G. Kevrekidis, and S. Sundaresan, Bubble flow simulations with the lattice Boltzmann method, Chemical Engineering Science 54:4817 (1999).

    Google Scholar 

  10. S. P. Dawson, S. Chen, and G. D. Doolen, Lattice Boltzmann computations for reactiondiffusion equations, J. Chem. Phys. 98:1514 (1993).

    Google Scholar 

  11. X. Y. He and L. S. Luo, A priori derivation of the lattice Boltzmann equation, Phys. Rev. E 55:R6333 (1997).

    Google Scholar 

  12. X. Y. He and L. S. Luo, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Phys. Rev. E 56:6811 (1997).

    Google Scholar 

  13. T. Abe, Derivation of the lattice Boltzmann method by means of the discrete ordinate method for the Boltzmann equation, J. Comput. Phys. 131:241 (1997).

    Google Scholar 

  14. S. Chapman and T. G. Cowling, The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge Mathematical Library, 1970), Chap. 16.

  15. L. E. Reichl, A Modern Course in Statistical Physics (John Wiley &; Sons, Inc., 1998).

  16. J. S. Rowlinson, J. D. van der Waals: On the Continuity of the Gaseous and Liquid States (Elsevier Science Publishers, 1988).

  17. J. S. Rowlinson and B. Widom, Molecular Theory of Capillarity (Oxford University Press, 1982).

  18. X. Y. He, X. W. Shan, and G. D. Doolen, Discrete Boltzmann equation model for nonideal gases, Phys. Rev. E 57:R13 (1998).

    Google Scholar 

  19. Y. Chen, S. L. Teng, T. Shukuwa, and H. Ohashi, Lattice-Boltzmann simulation of twophase fluid flows, Internat. J. Modern Phys. C 9:1383 (1998).

    Google Scholar 

  20. B. T. Nadiga and S. Zaleski, Investigations of a two-phase fluid model, Euro. J. Mech. B-Fluids 15:885 (1996).

    Google Scholar 

  21. Q. S. Zou and X. Y. He, Derivation of the macroscopic continuum equations for multiphase flow, Phys. Rev. E. 59:1253 (1999).

    Google Scholar 

  22. L. S. Luo, Unified theory of lattice Boltzmann models for nonideal gases, Phys. Rev. Lett. 81:1618 (1998).

    Google Scholar 

  23. L. S. Luo, Theory of the lattice Boltzmann method: Lattice Boltzmann models for nonideal gases, Phys. Rev. E. 62:4982 (2000).

    Google Scholar 

  24. R. Evans, The nature of the liquid-vapor interface and other topics in the statistical mechanics of non-uniform, classical fluids, Adv. in Phys. 28:143 (1979).

    Google Scholar 

  25. J. H. Irving and J. G. Kirkwood, The statistical mechanical theory of transport processes. IV. The equation of hydrodynamics, J. Chem. Phys. 18:817 (1950).

    Google Scholar 

  26. X. W. Shan and X. Y. He, Discretization of the velocity space in the solution of the Boltzmann equation, Phys. Rev. Lett. 80:65 (1998).

    Google Scholar 

  27. P. Pavlo, G. Vahala, and L. Vahala, Higher order isotropic velocity grids in lattice methods, Phys. Rev. Lett. 80:3960 (1998).

    Google Scholar 

  28. N. S. Martys, Energy conserving discrete Boltzmann equation for nonideal systems, Internat. J. Modern Phys. C 10:1367 (1999).

    Google Scholar 

  29. H. D. Chen, unpublished notes (1998).

  30. D. H. Rothman and J. M. Keller, Immiscible cellular-automaton fluids, J. Stat. Phys. 52:1119 (1988).

    Google Scholar 

  31. X. W. Shan and H. D. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47:1815 (1993).

    Google Scholar 

  32. X. W. Shan and H. D. Chen, Simulation of non ideal gases and liquid-gas phase transitions by the lattice Boltzmann equation, Phys. Rev. E 49:2941 (1994).

    Google Scholar 

  33. H. Chen, S. Chen, G. D. Doolen, Y. C. Lee, and H. A. Rose, Multithermodynamic phase lattice-gas automata incorporating interparticle potentials, Phys. Rev. A 40:2850 (1989).

    Google Scholar 

  34. X. W. Shan, private communication (2000).

  35. X. W. Shan and G. Doolen, Multicomponent lattice-Boltzmann model with interparticle interaction, J. Stat. Phys. 81:379 (1995).

    Google Scholar 

  36. M. R. Swift, W. R. Osborn, and J. M. Yeomans, Lattice Boltzmann simulation of nonideal fluids, Phys. Rev. Lett. 75:830 (1995).

    Google Scholar 

  37. M. R. Swift, E. Orlandini, W. R. Osborn, and J. M. Yeomans, Lattice Boltzmann simulation of liquid-gas and binary fluid system, Phys. Rev. E. 54:5041 (1996).

    Google Scholar 

  38. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system. I. Interfacial free energy, J. Chem. Phys. 28:258 (1958).

    Google Scholar 

  39. D. J. Holdych, D. Rovas, J. G. Geogiadis, and R. O. Buckius, An improved hydrodynamics formulation for multiphase flow lattice Boltzmann methods, Internat. J. Modern Phys. C 9:1393 (1998).

    Google Scholar 

  40. B. J. Palmer and D. R. Rector, Lattice Boltzmann algorithm for simulating thermal twophase flow, Phys. Rev. E 61:5295 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyi He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, X., Doolen, G.D. Thermodynamic Foundations of Kinetic Theory and Lattice Boltzmann Models for Multiphase Flows. Journal of Statistical Physics 107, 309–328 (2002). https://doi.org/10.1023/A:1014527108336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014527108336

Navigation