Skip to main content
Log in

Dimension-Splitting for Simplifying Diffusion in Lattice-Gas Models

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We introduce a simplified technique for incorporating diffusive phenomena into lattice-gas molecular dynamics models. In this method, spatial interactions take place one dimension at a time, with a separate fractional timestep devoted to each dimension, and with all dimensions treated identically. We show that the model resulting from this technique is equivalent to the macroscopic diffusion equation in the appropriate limit. This technique saves computational resources and reduces the complexity of model design, programming, debugging, simulation and analysis. For example, a reaction-diffusion simulation can be designed and tested as a one-dimensional system, and then directly extended to two or more dimensions. We illustrate the use of this approach in constructing a microscopically reversible model of diffusion-limited aggregation as well as in a model of growth of biological films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. E. S. Boek, P. V. Coveney, H. N. W. Lekkerkerker, and P. van der Schoot, Simulating the rheology of dense colloidal suspensions using dissipative particle dynamics, Phys. Rev. E 55:312–3133 (1997).

    Google Scholar 

  2. B. M. Boghosian, F. J. Alexander, and P. V. Coveney, eds., Proceedings of the sixth international conference on discrete models for fluid mechanics, Int. J. Mod. Phys. C 8(4) (1997).

  3. G. H. Weiss, Aspects and Applications of the Random Walk (North-Holland, Amsterdam, 1994).

    Google Scholar 

  4. J. Hardy, O. de Pazzis, and Y. Pomeau, Molecular dynamics of a classical lattice gas: Transport properties and time correlation functions, Phys. Rev. A 13(5):194–1961 (1976).

    Google Scholar 

  5. U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice-gas automata for the Navier-Stokes equation, Phys. Rev. Lett. 56(14):150–1508 (1986).

    Google Scholar 

  6. N. Margolus, T. Toffoli, and G. Vichniac, Cellular-automata supercomputers for fluiddynamics modeling, Phys. Rev. Lett. 56(16):169–1696 (1986).

    Google Scholar 

  7. N. H. Margolus, CAM-8: A computer architecture based on cellular automata, in Pattern Formation and Lattice-Gas Automata, A. Lawniczak and R. Kapral, eds., American Mathematical Society (1996).

  8. D. H. Rothman and S. Zaleski, Lattice-Gas Cellular Automata: Simple Models of Complex Hydrodynamics (Cambridge University Press, Cambridge, UK, 1997).

    Google Scholar 

  9. J. P. Rivet and J. P. Boon, Lattice Gas Hydrodynamics (Cambridge University Press, Cambridge, UK, 2000).

    Google Scholar 

  10. D. A. Wolf-Gladrow, Lattice-Gas Cellular Automata and Lattice Boltzmann Models: An Introduction, Lecture Notes in Mathematics (Springer-Verlag, New York, 2000).

    Google Scholar 

  11. R. Kapral, A. Lawniczak, and P. Masiar, Oscillations and waves in a reactive lattice-gas automaton, Phys. Rev. Lett. 66(19):253–2542 (1991).

    Google Scholar 

  12. J. P. Boon, D. Dab, R. Kapral, and A. Lawniczak, Lattice gas automata for reactive systems, Phys. Rep. 273(2):5–147 (1996).

    Google Scholar 

  13. T. Toffoli and N. H. Margolus, Cellular Automata Machines: A New Environment for Modeling (MIT Press, Cambridge, MA, 1987).

    Google Scholar 

  14. M. A. Smith, Cellular Automata Methods in Mathematical Physics, Ph.D. thesis (Massachusetts Institute of Technology, 1994).

  15. R. M. D'Souza, Macroscopic Order From Reversible and Stochastic Lattice Growth Models, Ph.D. thesis (Massachusetts Institute of Technology, 1999).

  16. N. H. Margolus, Crystalline computation, in Feynman and Computation, A. Hey, ed. (Addison-Wesley, 1998).

  17. W. F. Ames, Numerical Methods for Partial Differential Equations, 2nd ed. (Academic Press, New York, 1977).

    Google Scholar 

  18. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computation, 2nd ed. (Cambridge University Press, Cambridge, 1992).

    Google Scholar 

  19. T. Toffoli, Three-dimensional rotations by three shears, Graphical Models and Image Processing 59:8–96 (1997).

    Google Scholar 

  20. O. L. Bandman, Comparitive study of cellular-automata diffusion models, in Lecture Notes in Computer Science, Vol. 1662, pp. 39–409 (1999).

    Google Scholar 

  21. P. V. Coveney, J. B. Maillet, J. L. Wilson, P. W. Fowler, O. Al-Mushadani, and B. M. Boghosian, Lattice-gas simulations of ternary amphiphilic fluid flow in porous media, Int. J. Mod. Phys. C 9(8):147–1490 (1998).

    Google Scholar 

  22. B. Chopard and M. Droz, Cellular automata model for the diffusion equation, J. Stat. Phys. 64(3/4):85–892 (1991).

    Google Scholar 

  23. B. Chopard and M. Droz, Cellular Automata Modeling of Physical Systems (Cambridge University Press, Cambridge, UK, 1998).

    Google Scholar 

  24. R. Byron Bird, E. N. Lightfoot, and W. E. Stewart, Transport Phenomena, 2nd ed. (John Wiley &; Sons, New York, 2001).

    Google Scholar 

  25. D. Walgraef, Spatio-Temporal Pattern Formation: With Examples from Physics, Chemistry, and Materials Science (Springer Verlag, New York, 1997).

    Google Scholar 

  26. H. C. Berg, Random Walks in Biology (Princeton University Press, Princeton, 1983).

    Google Scholar 

  27. J. Crank, The Mathematics of Diffusion, 2nd ed. (Oxford University Press, Oxford, 1975).

    Google Scholar 

  28. H. D. Chen, B. M. Boghosian, P. V. Coveney, and M. Nekovee, A ternary lattice Boltzmann model for amphiphilic fluids, Proc. Roy. Soc. London Ser. A 456:204–2057 (2000).

    Google Scholar 

  29. J. L. Lebowitz, Microscopic reversibility and macroscopic behavior: Physical explanations and mathematical derivations, In Lecture Notes in Physics, J. J. Brey, J. Marro, J. M. Rubi, and M. San Miguel, eds. (Springer, 1995).

  30. D. Stauffer, Irreversible statistical mechanics from reversible motion: Q2R automata, Comput. Phys. Comm. 127(1):11–119 (2000).

    Google Scholar 

  31. N. Margolus, An embedded DRAM architecture for large-scale spatial-lattice computations, in The 27th Annual International Symposium on Computer Architecture, IEEE Computer Society, pp. 14–160 (2000).

  32. T. A. Witten and L. M. Sander, Diffusion-Limited Aggregation, a kinetic critical phenomenon, Phys. Rev. Lett. 47(19):140–1403 (1981).

    Google Scholar 

  33. R. M. D'Souza and N. H. Margolus, Thermodynamically reversible generalization of diffusion limited aggregation, Phys. Rev. E. 60(1):26–274 (1999).

    Google Scholar 

  34. G. E. Pizarro, D. Griffeath, and D. R. Noguera, Quantitative cellular automaton model for biofilms, J. Environ. Eng. 127:78–789 (2001).

    Google Scholar 

  35. G. E. Pizarro, Quantitative Modeling of Heterogeneous Biofilms Using Cellular Automata, Ph.D. thesis (University of Wisconsin, 2001).

  36. C. Carothers, K. Perumalla, and R. Fujimoto, Efficient optimistic parallel simulations using reverse computation, in ACM Transactions on Modeling and Computer Simulation, Vol. 9 (1999).

  37. N. Nisan, Pseudorandom generators for space-bounded computation, Combinatorica 12(4):44–461 (1992).

    Google Scholar 

  38. J. Yepez, Lattice-gas crystallization, J. Stat. Phys. 81(1/2):25–294 (1994).

    Google Scholar 

  39. C. Appert and S. Zaleski, Lattice gas with a liquid-gas transition, Phys. Rev. Lett. 64 (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Souza, R.M., Margolus, N.H. & Smith, M.A. Dimension-Splitting for Simplifying Diffusion in Lattice-Gas Models. Journal of Statistical Physics 107, 401–422 (2002). https://doi.org/10.1023/A:1014587326991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014587326991

Navigation