Skip to main content
Log in

Preparation and Characterization of Cu(II) Phthalocyanine Tetrasulfonate Intercalated and Supported on Layered Double Hydroxides

  • Published:
Journal of inclusion phenomena and macrocyclic chemistry Aims and scope Submit manuscript

Abstract

The aim of the present work was to synthesize and characterize layered doublehydroxides (LDHs), in the magnesium/aluminum form, intercalated with copper(II)phthalocyanine tetrasulfonate (CuPcTs). The metal complex was immobilized intothe LDH gallery region through the reconstitution method and this material wascharacterized by X-ray diffraction (XRD), surface area and porosity measurements,elementary analysis, thermogravimetry (TGA), vibrational (IR) and electronic(UV-visible) spectroscopies, and electronic paramagnetic resonance (EPR). Thecatalytic performance of CuPcTs intercalated and supported on the LDH wasevaluated by carrying out the hydrogen peroxide dismutation. The CuPcTs wassuccessfully intercalated into the LDH layers according to XRD data (the basalspacing of the carbonate precursors increases by approximately 15Å inthe intercalated samples). The surface area and porosity analysis suggested thatthe CuPcTs intercalated materials are not microporous solids. Samples containingthe metal complex confined between the LDH layers have an appreciable thermalstability: decomposition is not observed at least up to 400 °C. TGA experiments also show that the weight-loss curves of the CuPcTs supported samples superimpose those recorded for the CuPcTs complex and the LDH-carbonate while the curves for theintercalated materials are unique. CuPcTs intercalated or supported on LDHs is notactive in the hydrogen peroxide dismutation although the free form shows activity at pH above 8.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Schollhorn: Chem. Mater. 8, 1747 (1996).

    Google Scholar 

  2. M. Ogawa and K. Kuroda: Chem. Rev. 95, 399 (1995).

    Google Scholar 

  3. F. Bedioui: Coord. Chem. Rev. 144, 39 (1995).

    Google Scholar 

  4. K.J. Balkus Jr. and A.G. Gabrielov: J. Incl. Phenom. Molec. Rec. Chem. 21, 159 (1995).

    Google Scholar 

  5. F. Trifirò and A. Vaccari: Hydrotalcite-like Anionic Clays (Layered Double Hydroxides). In G. Alberti and T. Bein (eds), Solid State Supramolecular Chemistry: Two and Three-Dimensional Inorganic Networks, vol. 7, Pergamon, New York (1996), pp. 251–291.

    Google Scholar 

  6. T.J. Pinnavaia, M. Chibwe, V.R.L. Constantino, and S.K. Yun: Appl. Clay Sci. 10, 117 (1995).

    Google Scholar 

  7. A. Vaccari: Catal. Today 41, 53 (1998).

    Google Scholar 

  8. I.Y. Park, K. Kuroda, and C. Kato: Chem. Lett. 11, 2057 (1989).

    Google Scholar 

  9. S. Bonnet, F.A. de Roy, J.P. Besse, P. Maillard, and M. Momenteau: Chem. Mater. 8, 1962 (1996).

    Google Scholar 

  10. H. Tagaya, A. Ogata, T. Kuwahara, S. Ogata, M. Karasu, J. Kadokawa, and K. Chiba: Microporous Materials 7, 151 (1996).

    Google Scholar 

  11. M.E. Perez-Bernal, R. Ruano-Casero, and T.J. Pinnavaia: Catal. Lett. 11, 55 (1991).

    Google Scholar 

  12. M. Chibwe and T.J. Pinnavaia: J. Chem. Soc., Chem. Comm. 278 (1993).

  13. L. Ukrainczyk, M. Chibwe, T.J. Pinnavaia, and S.A. Boyd: J. Phys. Chem. 98, 2668 (1994).

    Google Scholar 

  14. L. Ukrainczyk, M. Chibwe, T.J. Pinnavaia, and S.A. Boyd: Environ. Sci. Technol. 29, 439 (1995).

    Google Scholar 

  15. M. Chibwe, L. Ukrainczyk, S.A. Boyd, and T.J. Pinnavaia: J. Mol. Catal. 113A, 249 (1996).

    Google Scholar 

  16. V.I. Iliev, A.I. Ileva, and L.D. Dimitrov: Appl. Catal. 126, 333 (1995).

    Google Scholar 

  17. V. Iliev, A. Ileva, and L. Bilyarska: J. Mol. Catal. A 126, 99 (1997).

    Google Scholar 

  18. I.J. Shannon, T. Maschmeyer, G. Sankar, J.M. Thomas, R.D. Oldroyd, M. Sheehy, D. Madill, A.M. Waller, and R.P. Townsend: Catal. Lett. 44, 23 (1997).

    Google Scholar 

  19. D.L.A. Faria, V.R.L Constantino, K.J. Baldwin, D.N. Batchelder, T.J. Pinnavaia, and M. Chibwe: J. Raman Spectrosc. 29, 103 (1998).

    Google Scholar 

  20. K.A. Carrado, J.E. Forman, R.E. Botto, and R.E Winans: Chem. Mater. 5, 472 (1993).

    Google Scholar 

  21. S. Kannan, S.V. Awate, and M.S. Agashe: Stud. Surf. Sci. Catal. 113, 927 (1998).

    Google Scholar 

  22. E.L. Crepaldi, P.C. Pavan, and J.B. Valim: J. Chem. Soc. Chem. Commun. 155 (1999).

  23. L. Barloy, J.P. Lallier, P. Battioni, D. Mansuy, Y. Piffard, M. Tournoux, J.B. Valim, and W. Jones: New J. Chem. 16, 71 (1992).

    Google Scholar 

  24. J. Twu and P.K. Dutta: J. Phys. Chem. 93, 7863 (1989).

    Google Scholar 

  25. D.S. Robins and P.K. Dutta: Langmuir 12, 402 (1996).

    Google Scholar 

  26. V. Rives and M.A. Ulibarri: Coord. Chem. Rev. 181, 61 (1999).

    Google Scholar 

  27. S. Miyata: Clays Clay Miner. 28, 50 (1980).

    Google Scholar 

  28. A.M.D.C. Ferreira and L.L.O. Duarte: J. Coord. Chem. 24, 339 (1991).

    Google Scholar 

  29. J.A. Gadsden: Infrared Spectra of Minerals and Related Inorganic Compounds, Butterworths, London (1975).

    Google Scholar 

  30. K. Nakamoto: Infrared and Raman Spectra of Inorganic and Coordination Compounds, John Wiley & Sons, New York (1997).

    Google Scholar 

  31. V.R.L. Constantino and T.J. Pinnavaia: Inorg. Chem. 34, 883 (1995).

    Google Scholar 

  32. S.K. Yun and T.J. Pinnavaia: Chem. Mater. 7, 348 (1995).

    Google Scholar 

  33. K.S.W. Sing, D.H. Everett, R.A.W. Haul, L. Moscou, R.A. Pierotti, J. Rouquérol, and T. Siemieniewska: Pure Appl. Chem. 57, 603 (1985).

    Google Scholar 

  34. M.J. Stillman and T. Nyokong: Absorption and Magnetic Circular Dichroism Spectral Properties of Phthalocyanines. Part 1: Complexes of Dianion Pc(-2). In C.C. Leznoff and A.B.P. Lever (eds), Phthalocyanines: Properties and Applications, vol. 1, VCH Publishers, New York (1989), pp. 133–289.

    Google Scholar 

  35. H. Sigel, P. Waldmeier, and B. Prijs: Inorg. Nucl. Chem. Lett. 7, 161 (1971).

    Google Scholar 

  36. J. Souto, Y. Gorbunova, M.L. Rodríguez-Méndez, S. Kudrevich, J. van Lier, and J.A. de Saja: J. Raman Spectrosc. 27, 649 (1996).

    Google Scholar 

  37. M. Fukui, N. Katayama, O. Yukihiro, and K. Iriyama: Chem. Phys. Lett. 177, 247 (1991).

    Google Scholar 

  38. R. Raja and P. Ratnasamy: Appl. Catalysis A: General 143, 145 (1996).

    Google Scholar 

  39. R.D. Sinisterra, R.V. Mielli, C.A.A. Carvalho, W.G. da Silva, A.S. Mangrich, and A.M.D.C. Ferreira: J. Incl. Phenom. 33, 203 (1999).

    Google Scholar 

  40. E.P. Giannelis: Chem. Mater. 2, 627 (1990).

    Google Scholar 

  41. Z.M. Gálbacs and L.J. Csányi: J. Chem. Soc., Dalton Trans. 2353 (1983).

  42. M.L.P. Santos, A. Faljoni-Alário, A.S. Mangrich, and A.M.D.C. Ferreira: J. Inorg. Biochem. 71, 71 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barbosa, C.A., Ferreira, A.M.D., Constantino, V.R.L. et al. Preparation and Characterization of Cu(II) Phthalocyanine Tetrasulfonate Intercalated and Supported on Layered Double Hydroxides. Journal of Inclusion Phenomena 42, 15–23 (2002). https://doi.org/10.1023/A:1014598231722

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014598231722

Navigation