Skip to main content
Log in

Weak Quantum Theory: Complementarity and Entanglement in Physics and Beyond

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The concepts of complementarity and entanglement are considered with respect to their significance in and beyond physics. A formally generalized, weak version of quantum theory, more general than ordinary quantum theory of physical systems, is outlined and tentatively applied to two examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. K. M. Meyer-Abich, Korrespondenz, Individualität and Komplementarität (Steiner, Wiesbaden, 1965).

    Google Scholar 

  2. D. Murdoch, Niels Bohr's Philosophy of Physics (Cambridge University Press, Cambridge, 1987).

    Google Scholar 

  3. A. Pais, Niels Bohr's Times in Physics, Philosophy, and Politics (Clarendon, Oxford, 1991).

    Google Scholar 

  4. W. Pauli, ed., Special issue on Complementarity, Dialectica 2 (1948).

  5. N. Bohr, “On the notions of causality and complementarity,” Dialectica 2, 312–319 (1948).

    Google Scholar 

  6. M. Jammer, The Philosophy of Quantum Mechanics (Wiley, New York, 1974), Chaps. 5 and 6.

    Google Scholar 

  7. A. Einstein, B. Podolsky, and N. Rosen, “Can quantum-mechanical description of physical reality be considered complete?,” Phys. Rev. 47, 777–780 (1935).

    Google Scholar 

  8. E. Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik,” Naturwiss. 23, 807–812, 823–828, 844–849.

  9. J. S. Bell, “On the Einstein–Podolsky–Rosen paradox,” Physics 1, 195–200 (1964).

    Google Scholar 

  10. A. Aspect, J. Dalibard, and G. Roger, “Experimental test of Bell's inequalities using timevarying analyzers,” Phys. Rev. Lett. 49, 1804–1807 (1982).

    Google Scholar 

  11. D. Tjøstheim, “A commutation relation for wide sense stationary processes.”SIAM J. Appl. Math. 30, 115–122 (1976).

    Google Scholar 

  12. K. Gustafson and B. Misra, “Canonical commutation relations of quantum mechanics and stochastic regularity,” Lett. Math. Phys. 1, 275–280 (1976).

    Google Scholar 

  13. B. Misra, “Nonequilibrium entropy, Lyapounov variables, and ergodic properties of classical systems,” Proc. Natl. Acad. Sci. USA 75, 1627–1631 (1978).

    Google Scholar 

  14. H. Atmanspacher and H. Scheingraber, “A fundamental link between system theory and statistical mechanic,” Found. Phys. 17, 939–963 (1987).

    Google Scholar 

  15. E. Scheibe, The Logical Analysis of Quantum Mechanics (Pergamon, Oxford, 1973), pp. 82–88.

    Google Scholar 

  16. H. Primas, “Mathematical and philosophical questions in the theory of open and macroscopic quantum systems,” in Sixty-Two Years of Uncertainty, A. I. Miller, ed. (Plenum, New York, 1990), pp. 233–257.

    Google Scholar 

  17. C. G. Jung, “Theoretische Überlegungen zum Wesen des Psychischen,” in Gesammelte Werke, Band 8 (Walter, Olten, 1971), footnote 129, pp. 261f; English translation: “On the nature of the psyche.” in Collected Works, Vol. 8 (Princeton University Press, Princeton, 1969), footnote 130, pp. 229f.

    Google Scholar 

  18. W. Pauli, “Naturwissenschaftliche and erkenntnistheoretische Aspekte der Ideen vom Unbewussten,” Dialectica 8, 283–301 (1954); English translation in W. Pauli, Writings on Physics and Philosophy, C. P. Enz and K. von Meyenn, eds. (Springer, Berlin, 1994).

    Google Scholar 

  19. C. G. Jung, Psychologische Typen (Rascher, Zürich, 1921); English translation: “Psychological types,” in Collected Works 6 (Princeton University Press, Princeton, 1976).

    Google Scholar 

  20. W. James, The Principles of Psychology, Vol. 1 (Dover, New York, 1950), Chap. IX.

    Google Scholar 

  21. E. Plaum, “Bohrs quantentheoretische Naturbeschreibung und die Psychologie,” Psychologie und Geschichte 3, 94–101 (1992).

    Google Scholar 

  22. P. Kruse and M. Stadler, Ambiguities in Mind and Nature (Springer, Berlin, 1995).

    Google Scholar 

  23. P. Jordan, Komplementarität und Verdrängung (Strom, Hamburg, 1947).

    Google Scholar 

  24. P. Bernays, “Über die Ausdehnung des Begriffes der Komplementarität auf die Philosophie,” Synthese 7, 66–70 (1948).

    Google Scholar 

  25. E. von Weizsäcker, “Erstmaligkeit und Bestätigung als Komponenten der pragmatischen Information,” in Offene Systeme I, E. von Weizsäcker, ed. (Klett–Cotta, Stuttgart, 1974), pp. 83–113.

    Google Scholar 

  26. K. Kornwachs and W. von Lucadou, “Pragmatic information as a nonclassical concept to describe cognitive systems,” Cognitive Systems 1, 79–94 (1985).

    Google Scholar 

  27. D. J. Chalmers, The Conscious Mind (Oxford University Press, Oxford, 1996).

    Google Scholar 

  28. C. G. Jung and W. Pauli, Naturerklärung und Psyche (Rancher, Zürich, 1952); English translation: The Interpretation of Nature and the Psyche (Pantheon, New York, 1955).

    Google Scholar 

  29. H. Atmanspacher and H. Primas, “The hidden side of Wolfgang Pauli,” J. Consc. Studies 3, 112–126 (1996).

    Google Scholar 

  30. H. Walach and H. Römer, “Complementarity is a useful concept for consciousness studies. A reminder,” Neuroendocrinology Letters 21, 221–232 (2000).

    Google Scholar 

  31. H. Atmanspacher, “Mind and matter as asymptotically disjoint, inequivalent representations with broken time-reversal symmetry,” in press.

  32. R. Haag, Local Quantum Physics (Springer, Berlin, 1996).

    Google Scholar 

  33. C. Piron, Foundations of Quantum Physics (Benjamin, Reading, 1976).

    Google Scholar 

  34. H. Primas, Chemistry, Quantum Mechanics, and Reductionism (Springer, Berlin, 1983).

    Google Scholar 

  35. W. Thirring, Quantum Mechanics of Atoms and Molecules (Springer, Berlin, 1981).

    Google Scholar 

  36. B. Misra, I. Prigogine, and M. Courbage, “From deterministic dynamics to probabilistic descriptions,” Physica A 98, 1–26 (1979); cf. A. S. Wightman, Math. Rev. 82e, 58066 (1982).

    Google Scholar 

  37. P. Grassberger and I. Procaccia, “Estimation of the Kolmogorov entropy from a chaotic signal,” Phys. Rev. A 28, 2591–2593 (1983).

    Google Scholar 

  38. R. Shaw, ‘Strange attractors, chaotic behavior, and information flow,’ Z. Naturforsch. 36a, 80–112 (1981).

    Google Scholar 

  39. H. Atmanspacher, “Ontic and epistemic descriptions of chaotic systems,” in Computing Anticipatory Systems, D. Dubois, ed. (American Institute of Physics, New York, 2000), pp. 465–478.

    Google Scholar 

  40. B. Misra and I. Prigogine, “Irreversibility and nonlocality,” Lett. Math. Phys. 7, 421–429 (1983).

    Google Scholar 

  41. H. Atmanspacher, “Dynamical entropy in dynamical systems,” in Time, Temporality, Now, H. Atmanspacher and E. Ruhnau, eds. (Springer, Berlin, 1997), pp. 327–346.

    Google Scholar 

  42. G. Birkhoff and J. von Neumann, “The logic of quantum mechanics,” Ann. Math. 37, 823–843 (1936).

    Google Scholar 

  43. F. R. Krueger, Physik und Evolution (Parey, Berlin, 1984).

    Google Scholar 

  44. H. Atmanspacher, “A propositional lattice for the logic of temporal predictions,” in Solitons and Chaos, I. Antoniou and F. J. Lambert, eds. (Springer, Berlin, 1991), pp. 58–70.

    Google Scholar 

  45. H. Atmanspacher, “Incommensurability of Liouvillean dynamics and information dynamic,” in Parallelism, Learning, Evolution, J. D. Becker, I. Eisele, and F. W. Mündemann, eds. (Springer, Berlin, 1991), pp. 482–499.

    Google Scholar 

  46. S. Freud, Vorlesungen zur Einführung in die Psychoanalyse (Fischer, Frankfurt, 1992).

    Google Scholar 

  47. M. Varga von Kibed, “Bemerkungen über philosophische Grundlagen und methodische Voraussetzungen zur systemischen Aufstellungsarbeit,” in Praxis des Familien–Stellens, G. Weber, ed. (Auer, Heidelberg, 1998). Compare other contributions of the author in the same volume.

    Google Scholar 

  48. D. Gernert, “Towards a closed description of observation processes,” BioSystems 54, 165–180 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Atmanspacher, H., Römer, H. & Walach, H. Weak Quantum Theory: Complementarity and Entanglement in Physics and Beyond. Foundations of Physics 32, 379–406 (2002). https://doi.org/10.1023/A:1014809312397

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014809312397

Navigation