Skip to main content
Log in

Improved nitrogen removal by application of new nitrogen-cycle bacteria

  • Published:
Reviews in Environmental Science and Biotechnology Aims and scope Submit manuscript

Abstract

In order to meet increasingly stringentEuropean discharge standards, new applicationsand control strategies for the sustainableremoval of ammonia from wastewater have to beimplemented. In this paper we discuss anitrogen removal system based on the processesof partial nitrification and anoxic ammoniaoxidation (anammox). The anammox process offersgreat opportunities to remove ammonia in fullyautotrophic systems with biomass retention. Noorganic carbon is needed in such nitrogenremoval system, since ammonia is used aselectron donor for nitrite reduction. Thenitrite can be produced from ammonia inoxygen-limited biofilm systems or in continuousprocesses without biomass retention. Forsuccessful implementation of the combinedprocesses, accurate biosensors for measuringammonia and nitrite concentrations, insight inthe complex microbial communities involved, andnew control strategies have to be developed andevaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beaumont HJE, Westerhoff HW & Van Spanning RJM (2001) The role of nitrite reductase in Nitrosomonas europaea. J Bacteriol, in press

  • Bernet N, Dnagcong P, Delgenes JP & Moletta M (2001) Nitrification at low oxygen concentration in a biofilm reactor. J. Environ. Eng. 3: 266-271

    Google Scholar 

  • Bock E, Schmidt I, Stuven R & Zart D (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch. Microbiol. 163: 16-20

    Google Scholar 

  • Cangelosi GA & Brabant WH (1997) Depletion of pre-16S rRNA in starved Escherichia coli cells. J. Bacteriol. 179: 4457-4463

    Google Scholar 

  • Dua RD, Bhandari B & Nicholas DJD (1979) Stable isotope studies on the oxidation of ammonia to hydroxylamine by Nitrosomonas europaea. Arch. Microbiol. 167: 106-111

    Google Scholar 

  • Dijkman H & Strous M (1999) Process for ammonia removal from wastewater. Patent PCT/NL99/00446

  • Egli K, Franger U, Alvarez PJJ, Siegrist H, Vandermeer JR & Zehnder AJB (2001) Enrichment and characterization of an anmmox bacterium from a rotating biological contractor treating ammonium-rich leachate. Arch. Microbiol. 175: 198-207

    Google Scholar 

  • Garrido JM, van Benthem W, van Loosdrecht MCM & Heijnen JJ (1997) Influence of dissolved oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Biotechnol. Bioeng. 53: 168-178

    Google Scholar 

  • Hellinga C, Schellen AAJC, Mulder JW, van Loosdrecht MCM & Heijnen JJ (1998) The Sharon process: an innovative method for nitrogen removal from ammonium-rich waste water. Wat. Sci. Tech. 37: 135-142

    Google Scholar 

  • Helmer C, Tromm C, Hippen A, Rosenwinckel KH, Seyfried CF & Kunst S (2001) Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems. Water Sci. technol. 43: 311-320

    Google Scholar 

  • Hooper AB, Vannelli T, Bergmann DJ & Arciero DM (1997) Enzymology of the oxidation of ammonia to nitrite by bacteria. Antonie van Leeuwenhoek 71: 59-67

    Google Scholar 

  • Jetten MSM (2001) New pathways for ammonia conversion in soil and aquatic systems. Plant & Soil 230: 9-19

    Google Scholar 

  • Jetten MSM, Horn SJ & van Loosdrecht MCM (1997) Towards a more sustainable municipal wastewater treatment system. Wat. Sci. Tech. 35: 171-180

    Google Scholar 

  • Jetten MSM, Strous M, Van de Pas-Schoonen KT, Schalk J, Van Dongen L, Van de Graaf AA, Logemann S, Muyzer G, Van Loosdrecht MCM & Kuenen JG (1999) The anaerobic oxidation of ammonium. FEMS Microbiol. Reviews 22: 421-437

    Google Scholar 

  • Jetten MSM, Wagner M, Fuerst J, van Loosdrecht MCM, Kuenen JG & Strous M (2001) Microbiology and application of the anaerobic ammonium oxidation (anammox) process. Curr. Opinion. Biotechnol 12: 283-288

    Google Scholar 

  • Kluyver AJ & Donker HJ (1926) Die Einhiet in der Biochemie. Chem. Zelle u. Gewebe 13: 134-190

    Google Scholar 

  • Kuai L & Verstraete W (1998) Ammonium removal by the oxygen-limited autotrophic nitrification-denitrifcation system. Appl. Environ. Microbiol. 64: 4500-4506

    Google Scholar 

  • Kuenen JG & Jetten MSM (2001) Extraordinary anaerobic ammonium oxidizing bacteria. ASM News 67: 456-463

    Google Scholar 

  • Larsen LH, Kjær & Revsbech NP (1997) A microscale NO -3 biosensor for environmental applications. Anal. Chem. 69: 3527-3531

    Google Scholar 

  • Lindsay MR, Web RI, Strous M, Jetten M, Butler MK & Fuerst JA (2001) Cell compartmentalization in planctomycetes: novel types of structural organization for the bacterial cell. Arch. Microbiol. 175: 413-429

    Google Scholar 

  • Lynggaard-Jensen A, Eisum NH, Rasmussen I, Svankær Rasmussen H & Stenstrøm (1996) Description and test of a new generation of nutrient sensors. Wat. Sci. Tech. 33: 25-36

    Google Scholar 

  • Martins dos Santos VAP, Tramper J & Wijffels RH (1998) Integrated nitrogen removal in compact systems by immobilized microorganisms. Biotechnology Annual. Reviews 4: 323-394

    Google Scholar 

  • Morita RY (1993) Bioavailability of energy and starvation state. In: S. Kjelleberg (Ed) Starvation in Bacteria. Plenum Press, New York

    Google Scholar 

  • Mulder A (1992) Anoxic Ammonium Oxidation US patent 427849(5078884) United States Patent

  • Mulder A, Van de Graaf AA, Robertson LA & Kuenen JG (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16: 177-183

    Google Scholar 

  • Mulder JW, Van Loosdrecht MCM, Hellinga C & Van Kempen R (2000) Full scale application of the Sharon process for treatment of rejection water of digested sludge dewatering. Proc. First IWA conference (pp. 267-274). IWAP London

    Google Scholar 

  • Nielsen M, Revsbech NP, Larsen LH & Lynggaard A (2002) Online determination of nitrite in wastewater treatment by use of a biosensor. Wat. Sci. Technol. In press

  • Oerther DB, Pernthaler J, Schramm A, Amann R & Raskin L (2000) Monitoring precursor 16S rRNAs of Acinetobacter spp. in activated sludge wastewater treatment systems. Appl. Environ. Microbiol. 66: 2154-2165

    Google Scholar 

  • Picioreanu C, van Loosdrecht MCM & Heijnen JJ (1997) Modelling the eefect of oxygen concentration on nitrite accumulation in a biofilm airlift suspension reactor. Wat Sci. Technol. 36: 147-156

    Google Scholar 

  • Poulsen LK, Ballard G & Stahl DA (1993) Use of rRNA fluorescence in situ hybridization for measuring the activity of single cells in young and established biofilms. Appl. Environ. Microbiol. 59: 1354-1360

    Google Scholar 

  • Revsbech NP, Kjær T, Damgaard L & Larsen LH (2000) Biosensors for analysis of water, sludge and sediments with emphasis on microscale biosensors. In: Buffle J & Horvai G (Eds) In situ Monitoring of Aquatic Systems: Chemical Analysis and Speciation (pp. 195-222). Wiley, New York

    Google Scholar 

  • Schalk J, Devries S, Kuenen JG & Jetten MSM (2000) A novel hydroxylamine oxidoreductase involved in the anammox process. Biochemistry 39: 5405-5412

    Google Scholar 

  • Schmid M, Schmitz-Esser S, Jetten M & Wagner M (2001) 16S-23S rDNA intergenic spacer and 23S rDNA of anaerobic ammonium oxidizing bacteria: implications for phylogeny and in situ detection. Environmental Microbiology 7: 45-459

    Google Scholar 

  • Schmid M, Twachtmann U, Klein M, Strous M, Juretschko S, Jetten M, Metzger J, Schleifer KH & Wagner M (2000) Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Sys. Appl. Microbiol. 23: 93-106

    Google Scholar 

  • Schmidt I & Bock E (1997) Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha Arch. Microbiol. 167: 106-111

    Google Scholar 

  • Schmidt I & Bock E (1998) Anaerobic ammonia oxidation by cell free extracts of Nitrosomonas eutropha. Antonie van Leeuwenhoek 73: 271-278

    Google Scholar 

  • Schmidt I, Bock E & Jetten MSM (2001) Ammonia oxidation by Nitrosomonas eutropha with NO2 as oxidant is not inhibited by acetylene. Microbiology(UK) 147: 2247-2253

    Google Scholar 

  • Siegrist H, Reithaar S & Lais P (1998) Nitrogen loss in a nitrifying rotating contractor treating ammonium rich leachate without organic carbon. Wat. Sci. Tech. 37: 589-591

    Google Scholar 

  • Liekers AO, Derwort N, Campos L, Kuenen JG, Strous M & Jetten MSM (2001) Completely autrophic ammonia removal over nitrite in a single reactor system. Wat. Research in press

  • Strous M, Van Gerven E, Ping Z, Kuenen JG & Jetten MSM (1997a) Ammonium removal from concentrated waste streams with the Anaerobic Ammonium Oxidation (anammox) process in different reactor configurations. Wat. Res. 31: 1955-1962

    Google Scholar 

  • Strous M, Van Gerven E, Kuenen JG & Jetten MSM (1997b) Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge. Appl. Environ. Microbiol. 63: 2446-2448

    Google Scholar 

  • Strous M, Heijnen JJ, Kuenen JG & Jetten MSM (1998) The sequencing batch reactor as a powerful tool to study very slowly growing micro-organisms. Appl. Microbiol. Biotechnol. 50: 589-596

    Google Scholar 

  • Strous M, Kuenen JG & Jetten MSM (1999a) Key physiology of anaerobic ammonium oxidation. Appl. Environ. Microbiol. 65: 3248-3250

    Google Scholar 

  • Strous M, Fuerst J, Kramer E, Logemann S, Muyzer G, van de Pas K, Webb, R, Kuenen JG & Jetten MSM (1999b) Missing lithotroph identified as new planctomycete. Nature 400: 446-449

    Google Scholar 

  • Third KA, Slieker AO, Kuenen JG & Jetten MSM (2002) The CANON system under ammonium limitation: interaction and competition between three groups of bacteria. Sys. Appl. Microbiol. 24: 588-596

    Google Scholar 

  • Van de Graaf AA, De Bruijn P, Robertson LA, Jetten MSM & Kuenen JG (1997) Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fluidized bed reactor. Microbiology (UK) 143: 2415-2421

    Google Scholar 

  • Van Dongen U, Jetten MSM & van Loosdrecht MCM (2001) The Sharon-anammox process for the treatment of ammonium rich wastewater. Wat. Sci. Technol. 44: 153-160

    Google Scholar 

  • van Loosdrecht MCM & Jetten MSM (1997) Method for treating ammonia-comprising wastewater. Patent PCT/NL97/00482

  • Van Loosdrecht MCM & Jetten MSM (1998) Microbiological conversions in nitrogen removal. Wat. Sci. Tech. 38: 1-7

    Google Scholar 

  • Wagner M, Rath G, Amann P & Schleifer, K-H (1995) In situ identification of ammonia oxidizing bacteria. Syst. Appl. Microbiol. 18: 251-264

    Google Scholar 

  • Winogradksy S (1890) Recherches sur les organismes de la nitrification. Ann. Inst. Pastuer. 4: 213-231

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mike S.M. Jetten.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jetten, M.S., Schmid, M., Schmidt, I. et al. Improved nitrogen removal by application of new nitrogen-cycle bacteria. Re/Views in Environmental Science and Bio/Technology 1, 51–63 (2002). https://doi.org/10.1023/A:1015191724542

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015191724542

Navigation