Skip to main content
Log in

New Approaches and New Applications for Computer Simulation of N-Body Problems

  • Published:
Acta Applicandae Mathematica Aims and scope Submit manuscript

Abstract

In this paper we study new computer models for turbulent flow in the small and in the large, for soliton collision, and for the fundamental problem of electrostatics. These are typical for models of microdrop collision, stress of a slotted copper plate, contact angle of adhesion, biological self reorganization, the bounce of an elastic ball, the motion of a top on a smooth surface, and elastic snap-through, which are only mentioned and referenced appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Batchelor, G. K.: The Theory of Homogeneous Turbulence, Cambridge Univ. Press, Cambridge, 1959.

    Google Scholar 

  2. Bernard, P. S.: Transition and turbulence. Basic physics, In: R.W. Johnson (ed.), The Handbook of Fluid Dynamics, CRC Press, Boca Raton, FL, 1998, pp. 13:1-12.

    Google Scholar 

  3. Feynman, R. P.: There's plenty of room at the bottom, Invited Lecture, Ann. Meet. APS, Cal. Inst. Tech., Pasadena, 1959 (available at www.zyvex.com/nanotech/feynman.html).

  4. Feynman, R. P., Leighton, R. B. and Sands, M.: The Feynman Lectures on Physics, Vol. I, Addison-Wesley, Reading, 1963.

    Google Scholar 

  5. Freitas, C. J., Street, R. L., Findikakis, A. N. and Koseff, J. R.: Numerical simulation of three dimensional flow in a cavity, Int. J. Num. Meth. Fluids 5 (1985), 561-575.

    Google Scholar 

  6. Goldstine, H.: Classical Mechanics, 2nd edn, Addison-Wesley, Reading, 1980.

    Google Scholar 

  7. Greenspan, D.: Particle Modeling, Birkhäuser, Boston, 1997.

    Google Scholar 

  8. Greenspan, D.: Supercomputer simulation of cracks and fractures by quasimolecular dynamics, Int. J. Phys. Chem. Solids 50 (1989), 1245-1249.

    Google Scholar 

  9. Greenspan, D.: Discrete string solitons, Tech. Report 343, Dept. Math., UTA, Arlington, TX 76019, May 2001.

    Google Scholar 

  10. Greenspan, D.: Particle simulation in contact mechanics of a bouncing elastic ball, Math. Comput. Modelling 32 (2000), 803-812.

    Google Scholar 

  11. Greenspan, D.: Conservative difference formulation of Calogero and Toda Hamiltonian systems, Comput. Math. Appl. 19 (1990), 91-95.

    Google Scholar 

  12. Greenspan, D. and Casulli, V.: Particle modelling of an elastic arch, Appl. Math. Modelling 9 (1985), 215-219.

    Google Scholar 

  13. Griffiths, D. J.: Introduction to Electrodynamics, Prentice-Hall, Englewood Cliffs, 1981.

    Google Scholar 

  14. Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B.: Molecular Theory of Gases and Liquids, Wiley, New York, 1967.

    Google Scholar 

  15. Kolmogorov, A. N.: Toward a more precise notion of the structure of the local turbulence in a viscous fluid at elevated Reynolds number, In: A. Favre (ed.), The Mechanics of Turbulence, Gordon and Breach, New York, 1964, pp. 447-458.

    Google Scholar 

  16. Korlie, M. S.: Particle modeling of liquid drop formation on a solid surface in 3-D, Comput. Math. Appl. 33 (1997), 97-114.

    Google Scholar 

  17. Ladyzhenskaya, O. A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn, Gordon and Breach, New York, 1969.

    Google Scholar 

  18. Ortega, J. M. and Rheinbolt, W. C.: Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York, 1972.

    Google Scholar 

  19. Pan, F. and Acrivos, A.: Steady flows in a rectangular cavity, J. FluidMech. 28 (1967), 643-655.

    Google Scholar 

  20. Schlichting, H.: Boundary Layer Theory, 4th edn, McGraw-Hill, New York, 1960.

    Google Scholar 

  21. Steinberg, M. S.: Reconstruction of tissues by disassociated cells, Science 141 (1963), 401-403.

    Google Scholar 

  22. Streeter, V. L.: Fluid Mechanics, 3rd edn, McGraw-Hill, New York, 1962.

    Google Scholar 

  23. Synge, J. L. and Griffith, B. A.: Principles of Mechanics, McGraw-Hill, New York, 1942, pp. 174-175.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Greenspan, D. New Approaches and New Applications for Computer Simulation of N-Body Problems. Acta Applicandae Mathematicae 71, 279–313 (2002). https://doi.org/10.1023/A:1015200732748

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015200732748

Navigation