Skip to main content
Log in

New Trends in Rock Mechanics

  • Published:
International Applied Mechanics Aims and scope

Abstract

Some new results in rock mechanics and some applications are presented. First, it is shown how an elastic/viscoplastic nonassociated constitutive equation can be derived for rock-like and particulate materials. This constitutive equation is based on the fundamental concept of compressibility/dilatancy. Damage and microcracking energy are discussed. Examples are given to demonstrate that it is possible to predict where the rock near underground openings is dilatable and where is compressible, where and when short-term or long-term failure is to be expected, the amount of rock involved in evolutive damage, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ali I. Abdel-Hadi, N. D. Cristescu, O. Cazacu, and Ray A. Bucklin, “Development of a new technique for measuring volume change of dry particulate systems under very low confining pressures,” in: Proc. 2000 ASME Int. Mech. Eng.Congr. and Expos. on Recent Trends in Constitutive Modeling of Advanced Materials, November 5-10, Orlando, Florida AMD, 239 (2000), pp. 65–77.

    Google Scholar 

  2. Ali I. Abdel-Hadi and N. D. Cristescu, “Testing and modeling of dry cohesive particulate materials,” in: Proc. Summer Conf. on Mechanics of Materials (June 27-29, 2001), Univ. of California, San Diego (2001) (in print).

    Google Scholar 

  3. I. V. Baklashov and V. A. Kartozia, Mechanics of Rocks [in Russian], Nedra, Moscow (1975).

  4. Z. T. Bieniawski, “Mechanism of brittle fracture of rock, Part I-Theory of the fracture process, Part II-Experimental studies, and Part III - Fracture in tension and under long-term loading,” Int. J. Rock Mech. Min. Sci., No. 4, 365–430 (1967).

    Google Scholar 

  5. Z. T. Bieniawski, Rock Mechanics Design in Mining and Tunneling, Balkema, Rotterdam (1984).

  6. W. F. Brace, B. W. Paulding, and C. Scholz, “Dilatancy in the fracture of crystalline rocks,” J. Geophys. Res., 71, No. 16, 3939–3953 (1966).

    Google Scholar 

  7. M. Brignoli and L. Sartori, “Incremental constitutive relations for the study of wellbore failure,” Int. J. Rock Mech. Min.Sci.& Geomech. Abstr., 30, No. 7, 1319–1322 (1993).

    Google Scholar 

  8. O. Cazacu, An Elastic/Viscoplastic Constitutive Equation for an Anisotropic Rock, Ph.D. Thesis, Univ. of Science and Technologies of Lille, France (1995).

    Google Scholar 

  9. O. Cazacu and N. D. Cristescu, “Invariant formulation of an elastic/viscoplastic constitutive equation for anisotropic rock,” in: Proc. 9th Int. Conf. (August, Paris, France), 2 (1999), pp. 869–873.

  10. O. Cazacu and N. D. Cristescu, “A paraboloid failure surface for transversely isotropic materials,” Mech. Mater., 31, 381–393 (1999).

    Google Scholar 

  11. O. Cazacu, J. Jin, and N. D. Cristescu, “A new constitutive model for alumina powder compaction,” KONA, Powder and Particle, 15, 103–112 (1997).

    Google Scholar 

  12. S. Cleja-Tigoiu, “Elasto-viscoplastic constitutive equations for rock-type materials (finite deformation),” Int. J. Engng.Sci., 29, 1531–1544 (1991).

    Google Scholar 

  13. D. F. Coates, Rock Mechanics Principles, CANMET, Canada (1981).

    Google Scholar 

  14. N. D. Cristescu, “Rock plasticity,” in: A. Sawczuk and G. Bianchi (eds.), Plasticity Today: Modelling, Methods and Applications, Elsevier Applied Sic. Publ. (1985), pp. 643–655.

  15. N. D. Cristescu, “Viscoplastic creep of rocks around horizontal tunnels,” Int. J. Rock Mech. Min. Sci.& Geomech. Abstr., 22, No. 6, 453–459 (1985).

    Google Scholar 

  16. N. D. Cristescu, “Damage and failure of viscoplastic rock-like materials,” Int. J. Plasticity, 2, No. 2, 189–204 (1986).

    Google Scholar 

  17. N. D. Cristescu, D. Fota, and E. Medves, “Tunnel support analysis incorporating rock creep,” Int. J. Rock Mech. Min.Sci., 24, No. 6, 321–330 (1987).

    Google Scholar 

  18. N. D. Cristescu and E. Medves, “Wood compressibility in mining applications,” in: Actes Bordeaux (1988), pp. 461–470.

  19. N. D. Cristescu, Rock Rheology, Kluwer Academic, Dordrecht (1989).

    Google Scholar 

  20. N. D. Cristescu and I. Duda, “A tunnel support analysis incorporating rock creep and the compressibility of a broken rock stratum,” Comput. Geotechn., 7, No. 3, 239–254 (1989).

    Google Scholar 

  21. N. D. Cristescu, “Nonassociated elastic/viscoplastic constitutive equations for sand,” Int. J. Plasticity, 7, 41–64 (1991).

    Google Scholar 

  22. N. D. Cristescu, “Constitutive equation for rock salt and mining applications,” in: Proc. 7th Int. Symp. on Salt, Elsevier Science Publ., Amsterdam (1992), pp. 105–115.

    Google Scholar 

  23. N. D. Cristescu, “A general constitutive equation for transient and stationary creep of rock salt,” Int. J. Rock Mech. Min.Sci. &; Geomech. Abstr., 30, No. 2, 125–140 (1993).

    Google Scholar 

  24. N. D. Cristescu, “Failure and creep failure around an underground opening,” in: A. G. Pasamesmetoglu, T. Kawamoto, B. N. Whittaker, and O. Aydan (eds.), Assessment and Prevention of Failure Phenomena in Rock Engineering, Balkema, Rotterdam (1993), pp. 205–210.

  25. N. D. Cristescu, “Rock rheology,” in: J. A. Hudson (editor in chief), Comprehensive Rock Engineering, Vol. 1, Rock Mechanics Principles, Pergamon Press (1993), pp. 523–544.

  26. N. D. Cristescu and U. Hunsche, “A comprehensive constitutive equation for rock salt: determination and application,” in: Proc. 3rd Conf. on the Mechanical Behavior of Salt (September 14, Paris), 16 (1993), p. 15.

  27. N. D. Cristescu, “Viscoplasticity of geomaterials,” in: N. D. Cristescu and G. Gioda (eds.), Visco-Plastic Behaviour of Geomaterials, Springer-Verlag, Vienna-New York (1994), pp. 103–207.

    Google Scholar 

  28. N. D. Cristescu, “A procedure to determine nonassociated constitutive equations for geomaterials,” Int. J. Plasticity, 10, No. 2, 103–131 (1994).

    Google Scholar 

  29. N. D. Cristescu, “Time effect in rock surrounding a horizontal tunnel,” in: P. L. Nelson and S. E. Laubach (eds.), Proc. 1st NARMS Symp., Balkema, Rotterdam (1994), pp. 657–664.

  30. N. D. Cristescu, I. R. Ionescu, and I. Rosca, “Short communication on a numerical analysis of the foot-floor interaction in long wall workings,” Int. J. Numer. Analyt. Meth. Geomech., 18, 641–652 (1994).

    Google Scholar 

  31. N. D. Cristescu, “Failure of compressible/dilatant geomaterials,” ASME, Reprint No. AMR146, 102–106 (1994).

  32. N. D. Cristescu and I. Paraschiv, “On the optimal shape of rectangular-like caverns,” Int. J. Rock Mech. Min. Sci., 32, No. 4, 285–300 (1995).

    Google Scholar 

  33. N. D. Cristescu and O. Cazacu, “Viscoplasticity of anisotropic rock,” in: S. Tanimura and A. S. Khan (eds.), Proc. 5th Int. Symp. on Plasticity and Its Current Applications, Gordon and Breach (1995), pp. 499–502.

  34. N. D. Cristescu, “Evolutive damage in rock salt,” in: Proc. 4th Conf. on the Mechanical Behavior of Salt, Trans. Tech.Publ., Clausthal-Zellerfeld (1996), pp. 131–141.

    Google Scholar 

  35. N. D. Cristescu, “Stability of large underground caverns in rock salt,” in: Rock Mechanics, Balkema, Rotterdam (1996), pp. 101–107.

  36. N. D. Cristescu and I. Paraschiv, “Creep, damage and failure around large rectangular-like caverns and galleries,” Mech.Cohes.-Frict. Mater., No. 1, 1–33 (1996).

    Google Scholar 

  37. N. D. Cristescu, “Design of yieldable tunnel supports for creeping rocks,” in: Trans. of the Society for Mining, Metallurgy, and Exploration, 300 (1997), pp. 1847–1854.

    Google Scholar 

  38. N. D. Cristescu and U. Hunsche, Time Effects in Rock Mechanics, John Wiley &; Sons, Chichester-New York-Weinheim-Brisbane-Singapore-Toronto (1998).

    Google Scholar 

  39. N. D. Cristescu, “Theoretical approach to sand liquefaction,” in: Proc. Geo-Denver. Soil Dynamics and Liquefaction (2000), pp. 1–9.

  40. N. D. Cristescu and O. Cazacu, “Viscoplasticity of geomaterials,” in: M. Zaman, G. Gioda, and J. Booker (eds.), Modeling in Geomechanics, John Wiley &; Sons (2000), pp. 129–153.

  41. A. Dahou, J. F. Shao, and M. Bederiat, “Experimental and numerical investigations on transient creep of porous chalk,” Mech. Mater., 21, 147–158 (1995).

    Google Scholar 

  42. A. M. Galperin and E. M. Shafarenko, Rheological Computation of Structures in Rocks [in Russian], Nedra, Moscow (1977).

    Google Scholar 

  43. U. Glabisch, Stoffmodell fur Grenzzustande im Salzgestein zur Berechnung von Gebirgshohlraumen, Ph.D. Dissertation, Technical University “Carolo, Wilhelmina,” Braunschweig, Germany (1997).

    Google Scholar 

  44. M. N. Goldstein, Mechanical Properties of Soils [in Russian], Stroiizdat, Moscow (1971).

    Google Scholar 

  45. R. E. Goodman, Introduction to Rock Mechanics, John Wiley, New York (1980).

    Google Scholar 

  46. S. S. Grigorian and V. A. Ioselevich, “Mechanics of soils,” in: Mechanics in the SSSR after 50 Years [in Russian], Vol. 3, Nauka, Moscow (1972).

    Google Scholar 

  47. A. Hettler, G. Gudehus, and I. Vardoulakis, “Stress-strain behaviour of sand in triaxial tests,” in: G. Gudehus, F. Darve, and L. Vardoulakis (eds.), Results of the Int. Workshop on Constitutive Relations for Soils, Balkema, Rotterdam (1984), pp. 55–66.

  48. E. Hoek and E. T. Brown, Underground Excavations in Rock, The Institution of Mining and Metallurgy, London (1980).

    Google Scholar 

  49. J. A. Hudson (editor-in-chief), Comprehensive Rock Engineering: Principles, Practices &; Projects, Pergamon Press, Oxford-New York-Seoul-Tokyo (1993).

    Google Scholar 

  50. U. Hunsche, Private Communications (1988).

  51. I. R. Ionescu and M. Sofonea, Functional and Numerical Methods in Viscoplasticity, Oxford Sci. Publ. (1993).

  52. J. C. Jaeger and N. G. W. Cook, Fundamentals of Rock Mechanics, Chapman and Hall, London (1979).

    Google Scholar 

  53. J. Jin and N. D. Cristescu, “A constitutive model for powder materials,” Trans. ASME, J. Eng. Mater. Technol., 120, No. 2, 97–104 (1998).

    Google Scholar 

  54. J. Jin and N. D. Cristescu, “An elastic/viscoplastic model for transient creep of rock salt,” Int. J. Plasticity, 14, No. 1-3, 85–107 (1998).

    Google Scholar 

  55. A. R. Jumikis, Rock Mechanics, Trans. Tech. Publ., Clausthal-Zellerfeld (1983).

    Google Scholar 

  56. Th. von Karman, “Festigkeitsversuche under allseitigen Druck, “ Zeitschrift. Ver. Deutsch. Ing., 55, 1749–1757 (1911).

    Google Scholar 

  57. R. L. Kranz, “The effects of confining pressure and stress difference on static fatigue of granite,” J. Geophys. Research, 85, No. B4, 1854–1866 (1980).

    Google Scholar 

  58. R. L. Kranz, W. J. Harris, and L. C. Neville, “Static fatigue of granite at 200 °C,” Geophys. Research Letters, 9, No. 1, 1–4 (1982).

    Google Scholar 

  59. E. Z. Lajtai and R. H. Schmidtke, “Delayed failure in rock loaded in uniaxial compression,” Rock Mech. Rock Eng., 19, 11–25 (1986).

    Google Scholar 

  60. A. Matei and N. D. Cristescu, “Variation in time of the elastic parameters of rock salt,” in: Proc. Int. Congr. on Rock Mechanics, 2 (1999), pp. 635–639.

    Google Scholar 

  61. A. Matei and N. D. Cristescu, “The effect of volumetric strain on elastic parameters for rock salt,” Mech. Cohes.-Frict.Mater., 5, 113–124 (2000).

    Google Scholar 

  62. A. Nadai, Theory of Flow and Fracture in Solids, Vol. 1, McGraw-Hill, New York (1950).

    Google Scholar 

  63. A. Nadai, Theory of Flow and Fracture of Solid, Vol. 2, McGraw-Hill, New York (1963).

    Google Scholar 

  64. P. A. Nawrocki, M. B. Dusseault, N. D. Cristescu, and R. K. Bratli, “Experimental methods for determining constitutive parameters for nonlinear rock modeling,” in: Yuan (ed.), Computer Methods and Advances in Geomechanics, Balkema, Rotterdam (1997), pp. 831–836.

  65. P. A. Nawrocki, N. D. Cristescu, M. B. Dusseault, and R. K. Bratli, “Experimental methods for determining constitutive parameters for nonlinear rock modeling,” Int. J. Rock Mech. Mining Sci., 36, 659–672 (1999).

    Google Scholar 

  66. L. Obert and W. I. Duvall, Rock Mechanics and the Design of Structures in Rock, John Wiley, New York (1967).

    Google Scholar 

  67. L. Paraschiv-Munteanu and N. D. Cristescu, “Stress relaxation during creep of rocks around deep boreholes,” Int. J. Eng.Sci., 39, 737–754 (2001).

    Google Scholar 

  68. T. Popp, O. Schulze, and H. Kern, Permeation and Development of Dilatancy and Permeability in Rock Salt (2001).

  69. O. Sano, I. Ito, and M. Terada, “Influence of strain rate on dilatancy and strength of Oshima granite under uniaxial compression,” J. Geophys. Research, 86, No. B10, 9299–9311 (1981).

    Google Scholar 

  70. R. H. Schmidtke and E. Z. Lajtai, “The long-term strength of Lac du Bonnet granite,” Int. J. Rock. Mech. Min. Sci. &; Geomech. Abstr., 22, No. 6, 461–465 (1985).

    Google Scholar 

  71. A. Schofield and P. Wroth, Critical State Soil Mechanics, McGraw-Hill, New York (1968).

    Google Scholar 

  72. V. V. Sokolovskii, Statics of Friable Media [in Russian], Gosizdat, Moscow (1954).

    Google Scholar 

  73. D. M. Wood, Soil Behaviour and Critical State Soil Mechanics, Cambridge University Press (1990).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cristescu, N.D. New Trends in Rock Mechanics. International Applied Mechanics 38, 1–22 (2002). https://doi.org/10.1023/A:1015364607665

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015364607665

Keywords

Navigation