Skip to main content
Log in

The effect of biological factors on the efficiency of river biofilms in improving water quality

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Biofilms are an ensemble of autotrophs and heterotrophs, which are highly efficient in removing inorganic and organic compounds, as well as other chemicals, from river water. They are, therefore, key elements in the self-purification processes which occur in rivers. Biofilm function is related to several environmental factors that govern river ecosystems: physical (light, temperature, water current), chemical (nutrient availability, toxicant effects), but also biological. Among the biological factors, community composition (algae, bacteria and fungi), biofilm structure (layer arrangement and biomass accumulation), and the presence of grazers determine variations in the efficiency of the self-depuration function of biofilms in rivers. Algae and bacteria show specific abilities for nutrients and other organic and inorganic compounds, but biofilm thickness may affect these abilities, both through a decrease in diffusion and by enhancing recycling within the biofilm. Nutrient uptake and consequently the capacity of biofilm to ameliorate water quality decreases with biomass. Moreover, biofilm thickness determines the effect of toxicants, since biomass prevents their diffusion through the biofilm. Grazing interferes in the relative efficiency of biofilms, by simplifying the composition of the biofilm community and by decreasing the amount of sorption and uptake of the biofilm. Closer attention should be paid to these aspects, since they unambiguously interfere with the performance of biofilms in the amelioration of the quality of river water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Admiraal, W., H. Blanck, M. Buckert De Jong, H. Guasch, N. Ivorra, V. Lehmann, B. A. H. Nystrom, M. Paulsson & S. Sabater, 1999. Short-term toxicity of zinc to microbenthic algae and bacteria in a metal polluted stream. Wat. Res. 33: 1989–1996.

    Google Scholar 

  • Allan, J. D., 1995. Stream Ecology. Structure and function of running waters. Chapman & Hall, London: 388 pp.

    Google Scholar 

  • Amann, R. I., J. Stromley, R. Devereux, R. Rey & D. A. Stahl, 1992. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilm. Appl. Environm. Microbiol. 58: 614–623.

    Google Scholar 

  • Battin, T. J., A. Butturini & F. Sabater, 1999. Immobilization and metabolism of dissolved organic carbon by natural sediment biofilms in a Mediterranean and temperate stream. Aquat. Microb. Ecol. 19: 297–305.

    Google Scholar 

  • Bergey, E. A., C. A. Boettiger & V. H. Resh, 1995. Effects of water velocity on the architecture and epiphytes of Cladophora glomerata (Chlorophyta). J. Phycol. 31: 264–271.

    Google Scholar 

  • Blanck, H. & S.-A. Wängberg, 1988. Induced community tolerance in marine periphyton established under arsenate stress. Can. J. Fish. Aquat. Sci. 45: 1816–1819.

    Google Scholar 

  • Borchardt, M. A., 1996. Nutrient limitation, p. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Freshwater Benthic Ecosystems. Academic Press, San Diego: 183–227.

    Google Scholar 

  • Borchardt, M. A., 1994. P-hosphorus uptake kinetics of Spirogyra fluviatilis in flowing water. J. Phycol. 30: 403–417.

    Google Scholar 

  • Bothwell, M. L., 1988. Growth rate responses of lotic periphytic diatoms to experimental phosphorus enrichment: the influence of temperature and light. Can. J. Fish. Aquat. Sci. 45: 261–270.

    Google Scholar 

  • Burkholder, J. M., R. G. Wetzel & K. L. Klomparens, 1990. Direct comparison of phosphate uptake by adnate and loosely attached microalgae within an intact biofilm matrix. Appl. Environ. Microbiol. 56: 2882–2890.

    Google Scholar 

  • Caron, D. A., 1994. Inorganic nutrients, bacteria, and the microbial loop. Microb. Ecol. 28: 295–298.

    Google Scholar 

  • Chapell, K. R. & R. Goulder, 1994. Enzymes as river pollutants and the response of native epilithic extracellular-enzyme activity. Environ. Pollut. 86: 161–169.

    Google Scholar 

  • Chen, X. & P. S. Stewart, 1996. Chlorine penetration into artificial biofilm is limited by a reaction-diffusion interaction. Environ. Sci. Technol. 30: 2078–2083.

    Google Scholar 

  • Chróst, R. J., 1991. Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In Chrost, R. J. (ed.), Microbial Enzymes in Aquatic Environments. Brock / Springer, Berlin: 29–59.

    Google Scholar 

  • Claret, C., P. Marmonier & J. P. Bravard, 1998. Seasonal dynamics of nutrient and biofilm in interstitial habitats of two contrasting riffles in a regulated large river. Aquat. Sci. 60: 33–55.

    Google Scholar 

  • Cole, J. J., 1982. Interactions between bacteria and algae in aquatic ecosystems. Ann. Rev. Ecol. Syst. 13: 291–314.

    Google Scholar 

  • de Beer, D. & A. Schramm, 1999. Micro-environments and mass transfer phenomena in biofilms studied with microsensors. Wat. Sci. Technol. 39: 173–178.

    Google Scholar 

  • de Beer, D., P. Stoodley & Z. Lewandowski, 1996. Liquid flow and mass transport in heterogeneous biofilms. Wat. Res. 30: 2761–2765.

    Google Scholar 

  • Dodds, W. K., B. J. F. Biggs & R. L. Lowe, 1999. Photosynthesisirradiance patterns in benthic microalgae: Variations as a function of assemblage thickness and community structure. J. Phycol. 35: 42–53.

    Google Scholar 

  • Flemming, H. C., 1995. Sorption sites in biofilms. Wat. Sci. Technol. 32: 27–33.

    Google Scholar 

  • Forni, C., A. Haegi & M. DelGallo, 1998. Polysaccharide composition of the mucilage of Azolla algal packets. Symbiosis 24: 303–313.

    Google Scholar 

  • Freeman, C. & M. A. Lock, 1995. The biofilm polysaccharide matrix: A buffer against changing organic substrate supply? Limnol. Oceanogr. 40: 273–278.

    Google Scholar 

  • Furumai, H. & B. E. Rittmann, 1994. Evaluation of multiple-species biofilm and floc processes using a simplified aggregate model. Wat. Sci. Technol. 29: 439–446.

    Google Scholar 

  • Genter, R. B. 1996. Ecotoxicology of inorganic chemical stress to algae. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego: 403–468.

    Google Scholar 

  • Guasch, H. & S. Sabater, 1994. Primary production of epilithic communities in undisturbed Mediterranean streams. Verh. Internat. Verein. Limnol. 25: 1761–1764.

    Google Scholar 

  • Guasch, H., E. Marti & S. Sabater, 1995. Nutrient enrichment effects on biofilm metabolism in a Mediterranean stream. Freshwat. Biol. 33: 373–383.

    Google Scholar 

  • Haack, T. K. & G. A. McFeters, 1982. Microbial dynamics of an epilithic mat community in a high alpine stream. Appl. Environ. Microbiol. 42: 702–707.

    Google Scholar 

  • Hill, W., 1996. Effects of Light. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Freshwater Benthic Ecosystems. Academic Press, San Diego: 121–148.

    Google Scholar 

  • Hill, W. R. & H. L. Boston, 1991. Community development alters photosynthesis-irradiance relations in stream periphyton. Limnol. Oceanogr. 36: 1375–1389.

    Google Scholar 

  • Hoagland, K. D., J. P. Carder & R. L. Spawn. 1996. Effects of organic toxic substances. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego: 469–496.

    Google Scholar 

  • Ivorra, N., S. Bremer, H. Guasch, M. H. S. Kraak & W. Admiraal, 2000. Differences in the sensitivity of benthic microalgae to Zn and Cd regarding biofilm development and exposure history. Environ. Toxicol. Chem. 19: 1332–1339.

    Google Scholar 

  • Jorgensen, B. B. & N. P. Revsbech, 1983. Photosynthesis and structure of benthic microbial mats: Microelectrode and SEM studies of four cyanobacterial communities. Limnol. Oceanogr. 28: 1075–1093.

    Google Scholar 

  • Kaplan, D., D. Christiaen & A. Shoshana, 1987. Chelating properties of extracellular polysaccharides from Chlorella sp. Appl. Environm. Microbiol. 53: 2953–2956.

    Google Scholar 

  • Kaplan, L. A. & J. D. Newbold, 1995. Measurement of streamwater biodegradable dissolved organic carbon with a plug-flow bioreactor. Wat. Res. 29: 2696–2706.

    Google Scholar 

  • Kaplan, L. A. & T. L. Bott, 1983. Microbial heterotrophic utilization of dissolved organic matter in a piedmont stream. Freshwat. Biol. 13: 363–377.

    Google Scholar 

  • Kaplan, L. A. & T. L. Bott, 1989. Diel fluctuations in bacterial activity on streambed substrata during vernal algal blooms: effects of temperature, water chemistry and habitat. Limnol. Oceanogr. 34: 718–733.

    Google Scholar 

  • Kaushik, N. K. & H. B. N. Hynes, 1971. The fate of the dead leaves that fall into streams. Arch. Hydrobiol. 68: 465–515.

    Google Scholar 

  • Lewandowski, Z., P. Stoodley, S. Altobelli & E. Fukushima, 1994. Hydrodynamics and kinetics in biofilm systems: Recent advances and new problems. Wat. Sci. Technol. 29: 223–229.

    Google Scholar 

  • Loaec, M., R. Olier & J. Guezennec, 1997. Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Wat. Res. 31: 1171–1179.

    Google Scholar 

  • Lock, M. A. 1993. Attached microbial communities in rivers. In Ford, T. E. (ed.), Aquatic Microbiology: an Ecological Approach. Blackwell, Oxford: 113–138.

    Google Scholar 

  • Maier, M., D. Maier & B. J. Lloyd, 2000. The role of biofilms in the mobilisation of polycyclic aromatic hydrocarbons (PAHS) from the coal-tar lining of water pipes. Wat. Sci. Technol. 41: 279–285.

    Google Scholar 

  • Marmonier, P., D. Fontvieille, J. Gibert & V. Vanek, 1995. Distribution of dissolved organic carbon and bacteria at the interface between the Rhone River and its alluvial aquifer. J. N. am. Benthol. Soc. 14: 382–392.

    Google Scholar 

  • Martí, E., J. Aumatell, L. Godé, M. Poch & F. Sabater, 2000. Effects of wastewater treatment plant inputs on stream nutrient retention. Water Resources Research (in press).

  • Marxsen, J. & K.-P. Witzel. 1991. Significance of extracellular enzymes for organic matter degradation and nutrient regeneration in small streams. In Chrost, R. J. (ed.), Microbial Enzymes in Aquatic Environments. Springer-Verlag: 270–285.

  • Mason, A. Z. & K. D. Jenkins, 1995. Metal detoxification in aquatic organisms. In Tessier, A. & D. R. Turner (eds), Metal Speciation and Bioavailability in Aquatic Systems. John Wiley & Sons: 479–608.

  • Mulholland, P. J., 1992. Regulation of nutrient concentrations in a temperate forest stream: roles of upland, riparian and instream processes. Limnol. Oceanogr. 37: 1512–1526.

    Google Scholar 

  • Mulholland, P. J., A. D. Steinman, E. R. Marzolf, D. R. Hart & D. L. DeAngelis, 1994. Effect of periphyton biomass on hydraulic characteristics and nutrient cycling in streams. Oecologia 98: 40–47.

    Google Scholar 

  • Mulholland, P. J., E. R. Marzolf, S. P. Hendricks, R. V. Wilkerson & A. K. Baybayan, 1995. Longitudinal patterns of nutrient cycling and periphyton characteristics in streams: a test of upstream-downstream linkage. J. N. am. Benthol. Soc. 14: 357–370.

    Google Scholar 

  • Mulholland, P. J., J. D. Newbold, J. W. Elwood & C. L. Hom, 1983. The effect of grazing intensity on phosphorus spiralling in autotrophic streams. Oecologia 58: 358–366.

    Google Scholar 

  • Muñoz, I., M. Real, H. Guasch, E. Navarro & S. Sabater, 2000. Resource limitation by freshwater snail (Stagnicola vulnerata) grazing pressure: an experimental study. Archiv. Hydrobiol. 148: 517–532.

    Google Scholar 

  • Muñoz, I., M. Real, H. Guasch, E. Navarro, S. Sabater, 2001. Long-term atrazine effects on periphyton under grating pressure. Aquatic Toxicology 55: 239–249.

    Google Scholar 

  • Nielsen, P. H., A. Jahn & R. Palmgren, 1997. Conceptual model for production and composition of exopolymers in biofilms.Wat. Sci. Technol. 36: 11–19.

    Google Scholar 

  • Nielsen, L. P., P. B. Christensen, N. P. Revsbech & J. Sorensen, 1990. Denitrification and oxygen respiration in biofilms studied with a microsensor for nitrous oxide and oxygen. Microb. Ecol. 19: 63–72.

    Google Scholar 

  • Paul, B. J. & H. C. Duthie, 1989. Nutrient cycling in the epilithon of running waters. Can. J. Bot. 67: 2302–2309.

    Google Scholar 

  • Peterson, C. G., 1996. Response of benthic algal communities to natural physical disturbance. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego: 375–402.

    Google Scholar 

  • Pimentel, D., J. Houser, E. Preiss, O. White, H. Fang, L. Mesnick, T. Barsky, S. Tariche, J. Schreck & S. Alpert, 1997. Water resources: Agriculture, the environment, and society. Bioscience 47: 97–106.

    Google Scholar 

  • Pinay, G., L. Roques & A. Fabre, 1993. Spatial and temporal patterns of denitrification in a riparian forest. J. Appl. Ecol. 30: 581–591.

    Google Scholar 

  • Portielje, R. & L. Lijklema, 1994. Kinetics of luxury uptake of phosphate by algae-dominated benthic communities. Hydrobiologia 275/276: 349–358.

    Google Scholar 

  • Pusch, M., D. Fiebig, I. Brettar, H. Eisenmann, B. K. Ellis, L. A. Kaplan, M. A. Lock, M. W. Naegeli & W. Traunspurger, 1998. The role of micro-organisms in the ecological connectivity of running waters. Freshwat. Biol. 40: 453–495.

    Google Scholar 

  • Romaní, A. & S. Sabater, 2000. Influence of algal biomass on extracellular enzyme activity in river biofilms. Microb. Ecol. 40.

  • Romaní, A. & S. Sabater, 2001. Structure and activity of rock and sand biofilms in a Mediterranean stream. Ecology 82: 3232–3245.

    Google Scholar 

  • Rott, E., H. C. Duthie & E. Pipp, 1998. Monitoring organic pollution and eutrophication in the Grand River, Ontario, by means of diatoms. Can. J. Fish. Aquat. Sci. 55: 1443–1453.

    Google Scholar 

  • Ryhiner, G., K. Sorensen, B. Birou & H. Gros, 1994. Biofilm reactors configuration for advanced nutrient removal. Wat. Sci. Technol. 29: 111–117.

    Google Scholar 

  • Sabater, F., J. Armengol & S. Sabater, 1991. Physico—chemical disturbances associated with spatial and temporal variation in a Mediterranean river. J. N. am. Benthol. Soc. 10: 2–13.

    Google Scholar 

  • Sabater, S., 2000. Structure and architecture of a stromatolite from a Mediterranean stream. Aquat. Microb. Ecol. 21: 161–168.

    Google Scholar 

  • Sabater, S., F. Sabater & J. Armengol, 1988. Relationships between diatom assemblages and physico—chemical variables in the River Ter (NE Spain). Int. Rev. Gesamt. Hydrobiol. 73: 171–179.

    Google Scholar 

  • Samrakandi, M. M., C. Roques & G. Michel, 1997. Influence of trophic conditions on exopolysaccharide production: bacterial biofilm susceptibility to chlorine and monochloramine. Can. J. Microbiol. 43: 751–758.

    Google Scholar 

  • Schwartz, T., S. Hoffmann & U. Obst, 1998. Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems.Wat. Res. 32: 2787–2797.

    Google Scholar 

  • Sinsabaugh, R. L. & S. Findlay, 1995. Microbial production, enzyme activity, and carbon turnover in surface sediments of the Hudson River estuary. Microb. Ecol. 30: 127–141.

    Google Scholar 

  • Sinsabaugh, R. L., D. Repert, T. Weiland, S. W. Golladay & A. E. Linkins, 1991. Exoenzyme accumulation in epilithic biofilms. Hydrobiologia 222: 29–37.

    Google Scholar 

  • Stadorub, M. E., P. T. S. Wong, C. I. Mayfield & Y. K. Chau, 1987. Influence of complexation and pH on individual and combined heavy metal toxicity to a freshwater green alga. Can. J. Fish. Aquat. Sci. 44: 1173–1180.

    Google Scholar 

  • Stal, L. J., 1995. Physiological ecology of cyanobacteria in microbial mats and other communities. New Phytol. 131: 1–32.

    Google Scholar 

  • Steinman, A. D., 1996. Effects of grazers on freshwater benthic algae. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology. Academic Press, San Diego: 341–373.

    Google Scholar 

  • Steinman, A. D., P. J. Mulholland & J. J. Beauchamp, 1995. Effects of biomass, light, and grazing on phosphorus cycling in stream periphyton communities. J. N. am. Benthol. Soc. 14: 371–381.

    Google Scholar 

  • Stevenson, R. J., 1996. An introduction to algal ecology in Freshwater Benthic Habitats. In Stevenson, R. J., M. L. Bothwell & R. L. Lowe (eds), Algal Ecology, Freshwater Benthic Ecosystems. Academic Press, San Diego: 3–30.

    Google Scholar 

  • Stewart, A. J. & W. R. Hill, 1993. Grazers, perihyton and toxicant movement in streams. Environ. Toxicol. Chem. 12: 955–957.

    Google Scholar 

  • Tate, C. M., R. E. Broshears & D. M. Mcknight, 1995. Phosphate dynamics in an acidic mountain stream: interactions involving algal uptake, sorption by iron oxide, and photoreduction. Limnol. Oceanogr. 40: 938–946.

    Google Scholar 

  • Torres, A. M. & L. M. O'Flaherty, 1976. Influence of pesticides on Chlorella, Chlorococcum, Stigeoclonium, Tribonema, Vaucheria and Oscillatoria. Phycologia 15: 25–36.

    Google Scholar 

  • Triska, K. J., J. H. Duff & R. J. Avanzino, 1993. Patterns of hydrological exchange and nutrient transformation in the hyporheic zone of a gravel-bottom stream: examining terrestrial-aquatic linkages. Freshwat. Biol. 29: 259–274.

    Google Scholar 

  • Whitford, L. A. & G. J. Schumacher, 1961. Effects of current on mineral uptake and respiration by a fresh-water alga. Limnol. Oceanogr. 6: 423–425.

    Google Scholar 

  • Wolfaardt, G. M., J. R. Lawrence, R. D. Robarts & D. E. Caldwell, 1995. Bioaccumulation of the herbicide diclofop in extracellular polymers and its utilization by a biofilm community during starvation. Appl. Environ. Microbiol. 61: 152–158.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabater, S., Guasch, H., Romaní, A. et al. The effect of biological factors on the efficiency of river biofilms in improving water quality. Hydrobiologia 469, 149–156 (2002). https://doi.org/10.1023/A:1015549404082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015549404082

Navigation