Skip to main content
Log in

Phase Diagram of Ultrafine Carbon

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

A three-dimensional phase diagram of carbon has been built in the coordinates “pressure–temperature—dispersivity” on the basis of the published data on detonation-diamond properties. Key words: three-dimensional phase diagram, detonation diamond, nanoscale diamond particles, ultrafine carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. F. P. Bundy, W. A. Basset, M. S. Weathers, et al., “The pressure-temperature phase and transformation diagram for carbon; updated through 1994,” Carbon, 34, No. 2, 141–153 (1996).

    Google Scholar 

  2. Chen Quan, Yun Sou Rong, Huang Feng, and Lei Ding Jing, “Study of formation of condensed carbon in detonation by analyzing graphite and diamond crystallites in soot,” in: 11th Int. Detonation Symp., Snowmass, Colorado, U.S.A., Aug. 29–Sept. 4 (1998), pp. 214–215

  3. Yu. F. Komnik, “Causes of nonequilibrium phase emergence in thin films,” Fiz. Tverd. Tela, 10, No. 1, 312–314 (1968).

    Google Scholar 

  4. I. D. Morokhov, L. I. Trusov, and V. N. Lapovok, Physical Phenomena in Ultrafine Media [in Russian], Énergoatomizdat, Moscow (1984), p. 195.

    Google Scholar 

  5. A. I. Bublik and B. Ya. Pines, “Phase transition under thickness changes in thin metal films,” Dokl. Akad. Nauk SSSR, 87, No. 2, 215–218 (1952).

    Google Scholar 

  6. S. B. Viktorov, S. A. Gubin, and I. V. Maklashova, “Thermodynamic calculations of the state diagram of disperse carbon phases,” in: Physical Chemistry of Ultrafine Systems: Proc. of the IV All-Russian Conf., Moscow (1999), pp. 195–196.

  7. S. B. Viktorov, S. A. Gubin, and I. V. Maklashova, “Equations of state for ultrafine graphite and diamond particles,” in: Physical Chemistry of Ultrafine Systems, Proc. of the V All-Russian Conf., Eng.-Phys. Inst., Moscow (2000), pp. 49–50.

    Google Scholar 

  8. Yu. G. Frolov, Course of Colloid Chemistry. Surface Phenomena and Disperse Systems [in Russian] Khimiya, Moscow (1982), p. 83.

    Google Scholar 

  9. I. Yu. Mal'kov, “Formation of the ultrafine diamond phase of carbon at detonation of heterogeneous mixture compositions,” Fiz. Goreniya Vzryva, 27, No. 5, 136–140 (1991).

    Google Scholar 

  10. I. Yu. Mal'kov “Analysis of factors determining efficiency of diamond formation by detonation,” in: Ultrafine Powders, Materials, and Nanostructures [in Russian], State Univ., Krasnoyarsk (1996), pp. 47–48.

    Google Scholar 

  11. S. V. Pershin, E. A. Petrov, and D. N. Tsaplin, “Influence of the molecular structure of explosives on the rate of formation, yield, and properties of ultradisperse diamond,” Combust. Expl. Shock Waves, 30, No. 2, 235–238 (1994).

    Google Scholar 

  12. A. M. Staver, N. V. Gubareva, A. I. Lyamkin, and E. A. Petrov, “Ultrafine diamond powders made by the use of explosion energy,” Combust. Expl. Shock Waves, 20, No. 5, 567–569 (1984).

    Google Scholar 

  13. N. R. Greiner, D. S. Phillips, and J. D. Johnson Fredvolk, “Diamonds in detonation soot,” Nature, 333, 440–442 (1988).

    Google Scholar 

  14. V. F. Anisichkin and I. Yu. Mal'kov, “Thermodynamic stability of ultradispersed diamond phase,” Combust. Expl. Shock Waves, 24, No. 5, 631–632 (1988).

    Google Scholar 

  15. P. Badziag, W. S. Verwoerd, W. P. Ellis, and N. R. Greiner, “Nanometre-sized diamonds are more stable than graphite,” Nature, 343, 244–245 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vereshchagin, A.L. Phase Diagram of Ultrafine Carbon. Combustion, Explosion, and Shock Waves 38, 358–359 (2002). https://doi.org/10.1023/A:1015618222919

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015618222919

Keywords

Navigation