Skip to main content
Log in

Microfabrication Technology for Vascularized Tissue Engineering

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

This work describes the application of advanced microfabrication technologies including silicon micromachining and polymer replica molding towards the field of tissue engineering of complex tissues and organs. As a general approach, tissue engineering of skin, bone and cartilage using cell transplantation on biodegradable matrices has achieved great success. However, such techniques encounter difficulties when applied to complex tissues and vital organs. The principal limitation for such applications is the lack of an intrinsic blood supply for the tissue engineered organ, which experiences significant cell death when the tissue thickness is increased above the 1–2 mm range. In this work, the concept of microfabricated scaffolds is introduced, with the goal of producing organ templates with feature resolution of 1 micron, well in excess of that necessary to fashion the capillaries which comprise the microcirculation of the organ. Initial efforts have resulted in high resolution biocompatible polymer scaffolds produced by replica molding from silicon micromachined template wafers. These scaffolds have been successfully seeded with endothelial cells in channels with dimensions as small as the capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • A.A. Ayon, S. Nagle, L. Frechette, A. Epstein, and M.A. Schmidt, J. Vac. Sci. Tech. B 18, 1412 (2000).

    Google Scholar 

  • S.N. Bhatia, M.L. Yarmush, and M. Toner, J. Biomed. Mater. Res. 34, 189 (1997).

    Google Scholar 

  • J.T. Borenstein, N.D. Gerrish, M.T. Currie, and E.A. Fitzgerald, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems 205 (1999).

  • J.T. Borenstein, K.R. King, C. Wang, E. Weinberg, and J.P. Vacanti, to be published.

  • E.T. den Braber, J.E. de Ruijter, L.A. Ginsel, A.F. von Recum, and J.A. Jansen, J. Biomed. Mater. Res. 40, 291 (1998).

    Google Scholar 

  • C.S. Chen, M. Mrksich, S. Huang, G.M. Whitesides, and D.E. Ingber, Science 276, 1425 (1997).

    Google Scholar 

  • A. Damji, L. Weston, and D.M. Brunette, Exp. Cell Res. 228, 114 (1996).

    Google Scholar 

  • R.D. Dowling, S.W. Etoch, K. Stevens, A. Johnson, A. Butterfield, and L.A. Gray, Circulation 102, 18, Suppl II, 763 (2000).

    Google Scholar 

  • J. Escaned, J. Segovia, A. Flores, P. Aragoncillo, C. Salas, F. Alfonso, M. Lopez, A. Garcia-Touchard, A. Fernandez-Ortiz, R. Hernandez, C. Banuelos, M. Sabate, L. Alfonso-Pulpon, and C. Macaya, J. Heart Lung Transplant. 20, 204 (2001).

    Google Scholar 

  • K.J. Gabriel, Proceedings of the IEEE 86, 1534 (1998).

    Google Scholar 

  • A.M. Hynes, H. Ashraf, J.K. Bhardwaj, J. Hopkins, I. Johnston, and J.N. Sheperd, Sensors and Actuators A, 74, 13 (1999).

    Google Scholar 

  • W. Huang, R.T. Yen, M. McLaurine, and G. Bledsoe, J. Appl. Physiol. 81, 2123 (1996).

    Google Scholar 

  • B.-H. Jo and D.J. Beebe, SPIE 3877, 222 (1999).

    Google Scholar 

  • M.R. Kaazempur-Mofrad et al., to be published.

  • S. Kaihara, J.T. Borenstein, R. Koka, S. Lalan, E.R. Ochoa, M. Ravens, H. Pien, B. Cunningham, and J.P. Vacanti, Tissue Engineering 6, 105 (2000).

    Google Scholar 

  • G.S. Kassab, C.A. Rider, N.J. Tang, and Y.C. Fung, Am. J. Physiol. 265, H350 (1993).

    Google Scholar 

  • G.S. Kassab, D.H. Lin, and Y.C. Fung, Am. J. Physiol. 267, H2100 (1994).

    Google Scholar 

  • K.R. King, C. Wang, E. Weinberg, J.P. Vacanti, and J.T. Borenstein, Biodegradable Polymer Microfluidics for Tissue Engineering Microvasculature. In Spring 2002 MRS Symposium, MEMS and BioMEMS, in press.

  • R. Langer and J.P. Vacanti, Science 260, 920 (1993).

    Google Scholar 

  • S.R. Quake and A. Scherer, Science 290, 1536 (2000).

    Google Scholar 

  • J.D. Seebach, M.K. Schneider, C.A. Comrack, A. LeGuern, S.A. Kolb, P.A. Knolle, S. Germana, H. DerSimonian, C. LeGuern, and D.H. Sachs, Xenotransplantation 848 (2001).

  • S. Takayama, E. Ostuni, X. Oian, J.C. McDonald, X. Jiang, M.-H. Wu, P. Leduc, D.E. Ingber, and G.M. Whitesides, Conference: 1st Annual International IEEE-EMBS Special Topic Conference on Microtechnologies in Medicine and Biology. Proceedings, (eds), A. Dittmar and D. Beebe, (IEEE, Piscataway, NJ, USA, 322-325, 2000).

    Google Scholar 

  • R.C. Thomson, M.J. Yaszemski, and A.G. Mikos, Principles of Tissue Engineering, Eds. R. Lanza, R. Langer and W. Chick (Landes & Co, 1997).

  • “U.S. Waiting List Tops 75,000,” Blood Weekly, May 10, 2001.

  • J.P. Vacanti and R. Langer, Lancet 354 (suppl 1), 32 (1999).

    Google Scholar 

  • G.M. Whitesides and A.D. Stroock, Physics Today 54, 42 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borenstein, J.T., Terai, H., King, K.R. et al. Microfabrication Technology for Vascularized Tissue Engineering. Biomedical Microdevices 4, 167–175 (2002). https://doi.org/10.1023/A:1016040212127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016040212127

Navigation