Skip to main content
Log in

Natural attenuation: What does the subsurface have in store?

  • Published:
Biodegradation Aims and scope Submit manuscript

Abstract

Throughout the world, organic and inorganic substances leach intothe subsurface as a result of human activities and accidents. There, the chemicals pose director indirect threats to the environment and to increasingly scarce drinking water resources.At many contaminated sites the subsurface is able to attenuate pollutants which, potentially,lowers the costs of remediation. Natural attenuation comprises a wide range of processesof which the microbiological component, which is responsible for intrinsic bioremediation,can decrease the mass and toxicity of the contaminants and is, therefore, the mostimportant. Reliance on intrinsic bioremediation requires methods to monitor the process. Thesubject of this review is how knowledge of subsurface geology and hydrology, microbial ecologyand degradation processes is used and can be used to monitor the potential andcapacity for intrinsic bioremediation in the subsurface and to verify degradation in situ.As research on natural attenuation in the subsurface has been rather fragmented and limitedand often allows only conclusions to be drawn of the site under investigation, we providea concept based on Environmental Specimen Banking which will contribute to furtherunderstanding subsurface natural attenuation processes and will help to develop andimplement new monitoring techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander M (1994) Biodegradation and Bioremediation. Academic Press, London

    Google Scholar 

  • Amann RI, Ludwig W & Schleifer KH (1995) Phylogenetic identi-fication and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169

    Google Scholar 

  • Anderson RT & Lovley DR (1997) Ecology and biogeochemistry of in situ groundwater bioremediation. Adv. Microbial Ecol. 15: 289-350

    Google Scholar 

  • Bazylinski DA, Dean AJ, Schuler D, Phillips EJP & Lovley DR (2000) N-2-dependent growth and nitrogenase activity in the metal-metabolizing bacteria, Geobacter and Magnetospirillum species. Environ. Microbiol. 2: 266-273

    Google Scholar 

  • Beller HR (2000) Metabolic indicators for detecting in situ anaerobic alkylbenzene degradation. Biodegradation 11: 125-139

    Google Scholar 

  • Bennett PC, Hiebert FK & Rogers JR (2000) Microbial control of mineral-groundwater equilibria: Macroscale to microscale. Hydrogeology J. 8: 47-62

    Google Scholar 

  • Bennett PC, Rogers JR, Choi WJ & Hiebert FK (2001) Silicates, silicte weathering, and microbial ecology. Geomicrobiology J 18: 3-19

    Google Scholar 

  • Bordas F & Bourg ACM (1998) A critical evaluation of sample pretreatment for storage of contaminated sediments to be investigated for the potential mobility of their heavy metal load. Water Air Soil Pollut. 103: 137-149

    Google Scholar 

  • Bosma TNP, Middeldorp PJM, Schraa G & Zehnder AJB (1997) Mass transfer limitation of biotransformation: Quantifying bioavailability. Environ. Sci. Technol. 31: 248-252

    Google Scholar 

  • Bradley PM (2000) Microbial degradation of chlorethanes in groundwater systems. Hydrogeology J. 8: 104-111

    Google Scholar 

  • Bragg JR, Prince RC, Harner EJ & Atlas RM (1994) Effectiveness of bioremediation for the Exxon-Valdez oil-spill. Nature (London) 368: 413-418

    Google Scholar 

  • Brockman FJ (1995) Nucleic-acid-based methods for monitoring the performance of in situ bioremediation Mol. Ecol. 4: 567-578

    Google Scholar 

  • Brockman FJ, Li SW, Fredrickson JK, Ringelberg DB, Kieft TL, Spadoni CM, White DC & McKinley JP (1998) Post-sampling changes in microbial community composition and activity in a subsurface paleosol. Microbial Ecol. 36: 152-164

    Google Scholar 

  • Brockman FJ & Murray CJ (1997) Subsurface microbiological heterogeneity: Current knowledge, descriptive approaches and applications. FEMS Microbiol. Rev. 20: 231-247

    Google Scholar 

  • Chandler DP & Brockman FJ (1996) Estimating biodegradative gene numbers at a JP-5 contaminated site using PCR. Appl. Biochem. Biotechnol. 57: 971-982

    Google Scholar 

  • Chandler DP & Brockman FJ (2001) Nucleic acid analysis of subsurface microbial communities: pitfalls, possibilities, and biogeochemical implications. In Fredrickson JK & Fletcher M (eds) Subsurface Microbiology and Biochemistry (pp 281-313). Wiley-Liss, New York

    Google Scholar 

  • Chandler DP, Brockman FJ & Fredrickson JK (1997) Use of 16S rDNA clone libraries to study changes in a microbial community resulting from ex situ perturbation of a subsurface sediment. FEMS Microbiol. Rev. 20: 217-230

    Google Scholar 

  • Chapelle FH (1993) Ground-Water Microbiology and Geochemistry. Wiley-Liss, New York

    Google Scholar 

  • Chapelle FH, Bradley PM, Lovley DR & Vroblesky DA (1996) Measuring rates of biodegradation in a contaminated aquifer using field and laboratory methods. Ground Water 34: 691-698

    Google Scholar 

  • Christensen TH, Bjerg PL, Banwart SA, Jakobsen R, Heron G & Albrechtsen HJ (2000) Characterization of redox conditions in groundwater contaminant plumes. J. Contam. Hydrol. 45: 165-241

    Google Scholar 

  • Christensen TH, Kjeldsen P, Bjerg PL, Jensen DL, Christensen JB, Baun A, Albrechtsen HJ & Heron C (2001) Biogeochemistry of landfill leachate plumes. Appl. Geochem. 16: 659-718

    Google Scholar 

  • Conrad ME, Daley PF, Fischer ML, Buchanan BB, Leighton T & Kashgarian M(1997) Combined C-14 and delta C-13 monitoring of in situ biodegradation of petroleum hydrocarbons. Environ. Sci. Technol. 31: 1463-1469

    Google Scholar 

  • Dunbar J, Ticknor LO & Kuske CR (2001) Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl. Environ. Microbiol. 67: 190-197

    Google Scholar 

  • Fell D (1997). Understanding the Control of Metabolism. Portland Press, London

    Google Scholar 

  • Fleming JT, Sanseverino J & Sayler GS (1993) Quantitative relationship between naphthalene catabolic gene frequency and expression in predicting PAH degradation in soils at town gas manufacturing sites. Environ. Sci. Technol. 27: 1068-1074

    Google Scholar 

  • Gunter EW(1997) Biological and environmental specimen banking at the Centers for Disease Control and Prevention. Chemosphere 34: 1945-1953

    Google Scholar 

  • Guschin DY, Mobarry BK, Proudnikov D, Stahl DA, Rittmann BE & Mirzabekov AD (1997) Oligonucleotide microchips as genosensors for determinative and environmental studies in microbiology. Appl. Environ. Microbiol. 63: 2397-2402

    Google Scholar 

  • Haldeman DL, Amy PS, White DC & Ringelberg DB (1994) Changes in bacteria recoverable from subsurface volcanic rock samples during storage at 4 degrees C. Appl. Environ. Microbiol. 60: 2697-2703

    Google Scholar 

  • Haldeman DL, Penny SA, Ringelberg D, White DC, Garen RE & Ghiorse WC (1995) Microbial growth and resuscitation alter community structure after perturbation. FEMS Microbiol. Ecol. 17: 27-37

    Google Scholar 

  • Head IM & Swannell RPJ (1999) Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr. Opin. Biotechnol. 10: 234-239

    Google Scholar 

  • Head IM, Saunders JR & Pickup RW (1998) Microbial evolution, diversity, and ecology: A decade of ribosomal RNA analysis of uncultivated microorganisms. Microbial Ecol. 35: 1-21

    Google Scholar 

  • Heron G & Christensen TH (1995) Impact of sediment-bound iron on redox buffering in a landfill leachate polluted aquifer (Vejen, Denmark). Environ. Sci. Technol. 29: 187-192

    Google Scholar 

  • Heron G, Christensen TH & Tjell JC (1994) Oxidation capacity of aquifer sediments Environ. Sci. Technol. 28: 153-158

    Google Scholar 

  • Hoyle BL & Arthur EL (2000) Biotransformation of pesticides in saturated-zone materials. Hydrogeology J. 8: 89-103

    Google Scholar 

  • Karlsson JOM & Toner M (1996) Long-term storage of tissues by cryoperservation: critical issues. Biomaterials 17: 243-256

    Google Scholar 

  • Kemp PF (1995) Can we estimate bacterial growth rates from ribosomal RNA content? In: Point I (Ed) Molecular Ecology of Aquatic Microbes (pp 279-302). Springer-Verlag, Berlin

    Google Scholar 

  • Kerry A, Edmonds CJ, Landon L & Yonker TL (1993) United-States-Canada-Great-Lakes-Regional-Specimen-Bank feasibility study. Sci. Total Envir. 140: 175-191

    Google Scholar 

  • Kota S, Borden RC & Barlaz MA (1999) Influence of protozoan grazing on contaminant biodegradation. FEMS Microbiol. Ecol. 29: 179-189

    Google Scholar 

  • Leonard S, Logel J, Luthman D, Casanova M, Kirch D & Freedman R (1993) Biological stability of messenger RNA isolated from human postmortem brain collections. Biol. Psychiatry 33: 456-466

    Google Scholar 

  • Lewis DG (1992) Transformations induced in ferrihydrite by ovendrying. Z. Pflanzenernahr. 155: 461-466

    Google Scholar 

  • Lindell D & Post AF (2001) Ecological aspects of ntcA gene expression and its use as an indicator of the nitrogen status of marine Synechococcus spp. Appl. Environ. Microbiol. 67: 3340-3349

    Google Scholar 

  • Lonergan DJ, Jenter HL, Coates JD, Phillips EJP, Schmidt TM & Lovley DR (1996) Phylogenetic analysis of dissimilatory Fe(III)-reducing bacteria. J. Bacteriol. 178: 2402-2408

    Google Scholar 

  • Lovley DR (2001). Reduction of iron and humics in subsurface environments. In: Fredrickson JK & Fletcher M (Eds) Subsurface Microbiology and Biogeochemistry. Wiley-Liss, New York

    Google Scholar 

  • Ludvigsen L, Albrechtsen HJ, Ringelberg DB, Ekelund F & Christensen TH (1999) Distribution and composition of microbial populations in landfill leachate contaminated aquifer (Grindsted, Denmark). Microbial Ecol. 37: 197-207

    Google Scholar 

  • Lynch JM & Panting LM (1981) Measurements of the microbial biomass in intact cores of soil. Microbial Ecol. 7: 224-234

    Google Scholar 

  • Lyngkilde J & Christensen TH (1992) Fate of organic contaminants in the redox zones of a landfill leachate pollution plume (Vejen, Denmark). J. Contam. Hydrol. 10: 291-307

    Google Scholar 

  • MacLeod RA & Calcott PH (1976) Cold shock and freezing damage to microbes. In: Gray TRG & Postgate JR (Eds) The Survival of Negative Microbes (pp 81-109). Cambridge University Press, Cambridge

    Google Scholar 

  • Madsen EL (2000) Nucleic-acid characterization of the identity and activity of subsurface microorganisms. Hydrogeology J. 8: 112-125

    Google Scholar 

  • Marsh TL, Saxman P, Cole J & Tiedje J (2000) Terminal restriction fragment length polymorphism analysis program, a web-based research tool for microbial community analysis. Appl. Environ. Microbiol. 66: 3616-3620

    Google Scholar 

  • Meckenstock RU, Morasch B, Warthmann R, Schink B, Annweiler E, Michaelis W & Richnow HH (1999) C-13/C-12 isotope fractionation of aromatic hydrocarbons during microbial degradation. Environ. Microbiol. 1: 409-414

    Google Scholar 

  • Moschetti G, Blaiotta G, Villani F, Coppola S & Parente E (2001) Comparison of statistical methods for identification of Streptococcus thermophilus, Enterococcus faecalis, and Enterococcus faecium from Randomly Amplified Polymorphic DNA patterns. Appl. Environ. Microbiol. 67: 2156-2166

    Google Scholar 

  • Muyzer G & Smalla K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Anton. Leeuwenhoek Int. J. Gen. M. 73: 127-141

    Google Scholar 

  • Nielsen PH, Bjarnadottir H, Winter PL & Christensen TH (1995) In situ and laboratory studies on the fate of specific organic compounds in an anaerobic landfill leachate plume. 2. Fate of aromatic and chlorinated aliphatic compounds. J. Contam. Hydrol. 20: 51-66

    Google Scholar 

  • Noble PA, Almeida JS & Lovell CR (2000) Application of neural computing methods for interpreting phospholipid fatty acid pro-files of natural microbial communities. Appl. Environ. Microbiol. 66: 694-699

    Google Scholar 

  • NRC (1993) In situ bioremediation: When does it work? National Academy Press, Washington, DC

    Google Scholar 

  • Paulus M, Klein R, Wagner G & Muller P (1996) Biomonitoring and environmental specimen banking. Environ. Sci. Pollut. Res. 3: 169-177

    Google Scholar 

  • Phelps TJ, Murphy EM, Pfiffner SM & White DC (1994) Comparison between geochemical and biological estimates of subsurface microbial activities. Microbial Ecol. 28: 335-349

    Google Scholar 

  • Postma D, Jakobsen R (1996) Redox zonation: Equilibrium constraints on the Fe(III)/SO4-reduction interface. Geochim. Cosmochim. Acta 60: 3169-3175

    Google Scholar 

  • Radajewski S, Ineson P, Parekh NR & Murrell JC (2000) Stableisotope probing as a tool in microbial ecology. Nature (London) 403: 646-649

    Google Scholar 

  • Ralebitso TK, Senior E & Van Verseveld HW (2002) Microbial aspects of atrazine degradation in natural environments. Biodegradation 13: 11-19

    Google Scholar 

  • Rivkina EM, Friedmann EI, McKay CP & Gilichinsky DA (2000) Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66: 3230-3233

    Google Scholar 

  • Rochelle PA, Cragg BA, Fry JC, Parkes RJ & Weightman AJ (1994) Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol. Ecol. 15: 215-225

    Google Scholar 

  • Röling WFM, van Breukelen BM, Braster M, Goeltom MT, Groen J & van Verseveld HW (2000) Analysis of microbial communities in a landfill leachate polluted aquifer using a new method for anaerobic physiological profiling and 16S rDNA based fingerprinting. Microbial Ecol. 40: 177-188

    Google Scholar 

  • Röling WFM, van Breukelen BM, Braster M, Lin B & van Verseveld HW (2001) Relations between microbial community structure and hydrochemistry in a landfill leachate polluted aquifer. Appl. Environ. Microbiol. 67: 4619-4629

    Google Scholar 

  • Smith AB & Austin JJ (1997) Can geologically ancient DNA be recovered from the fossil record? Geoscientist 7: 8-11

    Google Scholar 

  • Smith VH (1993) Implications of resource-ratio theory for microbial ecology. Adv. Microb. Ecol. 13: 1-37

    Google Scholar 

  • Spormann AM & Widdel F (2000) Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11: 85-105

    Google Scholar 

  • Stapleton RD, Ripp S, Jimenez L, Cheol-Koh S, Fleming JT, Gregory IR & Sayler GS (1998) Nucleic acid analytical approaches in bioremediation: Site assessment and characterization. J. Microbiol. Meth. 32: 165-178

    Google Scholar 

  • Stults JR, Snoeyenbos-West O, Methe B, Lovley DR & Chandler DP (2001) Application of the 5_ fluorogenic exonuclease assay (TaqMan) for quantitative ribosomal DNA and rRNA analysis in sediments. Appl. Environ. Microbiol. 67: 2781-2789

    Google Scholar 

  • Taylor R & Fletcher RL (1998) Cryopreservation of eukaryotic algae-a review of methodologies. J. Appl. Phycol. 10: 481-501

    Google Scholar 

  • Tiedje JM, Asuming-Brempong S, Nusslein K, Marsh TL & Flynn SJ (1999) Opening the black box of soil microbial diversity. Appl. Soil Ecol. 13: 109-122

    Google Scholar 

  • Urbach E, Vergin KL & Giovannoni SJ (1999) Immunochemical detection and isolation of DNA from metabolically active bacteria. Appl. Environ. Microbiol. 65: 1207-1213

    Google Scholar 

  • von Wintzingerode F, Gobel UB & Stackebrandt E (1997) Determination of microbial diversity in environmental samples: Pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev. 21: 213-229

    Google Scholar 

  • Ward JAM, Ahad JME, Lacrampe-Couloume G, Slater GF, Edwards EA & Lollar BS (2000) Hydrogen isotope fractionation during methanogenic degradation of toluene: Potential for direct verification of bioremediation. Environ. Sci. Technol. 34: 4577-4581

    Google Scholar 

  • Whitman WB, Coleman DC & Wiebe WJ (1998) Prokaryotes: The unseen majority. Proc. Natl. Acad. Sci. USA 95: 6578-6583

    Google Scholar 

  • Wilson MS, Bakermans C & Madsen EL (1999) In situ, real-time catabolic gene expression: Extraction and characterization of naphthalene dioxygenase mRNA transcripts from groundwater. Appl. Environ. Microbiol. 65: 80-87

    Google Scholar 

  • Zelles L, Adrian P, Bai QY, Stepper K, Adrian MV, Fischer K, Maier A & Ziegler A (1991) Microbial activity measured in soils stored under different temperature and humidity conditions. Soil. Biol. Biochem. 10: 955-962

    Google Scholar 

  • Zwolinski MD, Harris RF & Hickey WJ (2000) Microbial consortia involved in the anaerobic degradation of hydrocarbons. Biodegradation 11: 141-158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Röling, W.F., van Verseveld, H.W. Natural attenuation: What does the subsurface have in store?. Biodegradation 13, 53–64 (2002). https://doi.org/10.1023/A:1016310519957

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016310519957

Navigation