Skip to main content
Log in

Formation of Ni(CO)4 during the Interaction between CO and Silica-Supported Nickel Catalyst: an FTIR Spectroscopic Study

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The formation of Ni(CO)4 during interaction of CO with silica-supported highly dispersed nickel metal (d av≈4 nm) was investigated by FTIR spectroscopy. At temperatures below 145 K, in addition to linear and bridged nickel carbonyls, CO adsorption on Ni0/SiO2 leads to the formation of Ni(CO) x (x=2, 3) subcarbonyls (band at ca. 2090 cm−1) and negligible amounts of Ni(CO)4 adsorbed on SiO2 (band at 2048 cm−1). Up to this temperature CO causes no detectable erosion of the metal surface. Above 145 K the rate of interaction between CO and the nickel particles significantly increases. Until 235 K Ni(CO)4 mainly remains in the adsorbed state, while at still higher temperatures the equilibrium between adsorbed and gaseous Ni(CO)4 (band at 2058 cm−1) is shifted towards the latter. It is assumed that subcarbonyls formed on defect sites of the metal surface are precursors of the nickel tetracarbonyl. Successive adsorption–evacuation cycles of CO at room temperature result in a decrease in the amount of the Ni(CO)4 formed, probably due to a reduction of the number of defect metal sites. On the basis of 12CO and 13CO coadsorption, an alternative interpretation of the band at 2048 cm−1 to species containing isolated Ni(CO)3 groups is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zakumbaeva, N. Zakharina, L. Beketaeva and V. Naidin, in: Metal Catalysts, ed. D.V. Sokolskii (Nauka, Alma-Ata, 1982).

    Google Scholar 

  2. B.N. Dolgov, Catalysis in Organic Chemistry (G.H.I., Moscow, 1949).

    Google Scholar 

  3. G.C. Bond, Heterogeneous Catalysis (Oxford University Press, Oxford, 1988).

    Google Scholar 

  4. F. Mauge, C. Binet and J.C. Lavalley, in: Catalysis by Metals, eds. A.J. Renouprez and H. Jobic (Springer, Berlin, 1997) p. 1.

    Google Scholar 

  5. N. Sheppard and T.T. Nguyen, in: Advances in Infrared and Raman Spectroscopy, Vol. 5, eds. P.J. Clarke and R.E. Hester (Wiley, New York, 1978) p. 67.

    Google Scholar 

  6. A. Davydov, IR Spectroscopy Applied to Surface Chemistry of Oxides (Nauka, Novosibirsk, 1984).

    Google Scholar 

  7. M.I. Zaki, in: Catalysts in Petroleum Refining and Petrochemical Industries 1995, Stud. Surf. Sci. Catal., Vol. 100 (Elsevier, Amsterdam, 1996) p. 567.

    Google Scholar 

  8. D.G. Blackmond and E.I. Ko, J. Catal. 96 (1985) 210.

    Google Scholar 

  9. H. Rochester and R.J. Teller, J. Chem. Soc. Faraday Trans. I 73 (1977) 609.

    Google Scholar 

  10. M. Primet, J.A. Dalmon and G.A. Martin, J. Catal. 46 (1977) 25.

    Google Scholar 

  11. J.B. Peri, J. Catal. 86 (1984) 84.

    Google Scholar 

  12. G. Martra, H.M. Swaan, C. Mirodatos, M. Kermarec and C. Louis, Stud. Surf. Sci. Catal. 111 (1997) 617.

    Google Scholar 

  13. C. Mirodatos, H. Praliaud and M. Primet, J. Catal. 107 (1987) 275.

    Google Scholar 

  14. M. Agnelly, M. Kolb and C. Mirodatos, J. Catal. 148 (1994) 9.

    Google Scholar 

  15. W.M. Shen, J.A. Dumesic and C.G. Hill, Jr., J. Catal. 68 (1981) 152.

    Google Scholar 

  16. P. de Groot, M. Coulson and K. Dransfeld, Surf. Sci. 94 (1980) 204.

    Google Scholar 

  17. G. Grainer and D. Menzel, J. Catal. 77 (1982) 382.

    Google Scholar 

  18. W.A. Schmidt, J.H. Block and K.A. Becker, Surf. Sci. 122 (1982) 409.

    Google Scholar 

  19. B. Liang, G. Abend and J.H. Block, Surf. Sci. 126 (1983) 392.

    Google Scholar 

  20. V.K. Medvedev, R. Børner and N. Kruse, Surf. Sci. 401 (1998) L371.

    Google Scholar 

  21. C.H. Bartholomew and R.B. Pannel, J. Catal. 65 (1980) 390.

    Google Scholar 

  22. F.A. Cotton, G. Wilkinson, C. Murillo and M. Bochmann, Advanced Inorganic Chemistry (Wiley, New York, 1999).

    Google Scholar 

  23. K. Hadjiivanov, M. Mihaylov, D. Klissurski, P. Stefanov, N. Abaddjieva, E. Vassileva and L. Mintchev, J. Catal. 185 (1999) 314.

    Google Scholar 

  24. M. Mihaylov, K. Hadjiivanov and D. Klissurski, in: 9th Int. Symp. Heterogeneous Catal., Varna, Bulgaria, 23–24 September 2000, eds. L. Petrov, Ch. Bonev and G. Kadinov, p. 387.

  25. K. Hadjiivanov, M. Mihaylov, N. Abadjieva and D. Klissurski, J. Chem. Soc. Faraday Trans. 94 (1998) 3711.

    Google Scholar 

  26. M. Mihaylov, K. Hadjiivanov, N. Abadjieva, D. Klissurski and L. Mintchev, Stud. Surf. Sci. Catal. 118 (1998) 295.

    Google Scholar 

  27. K. Mohana Rao, G. Spoto and A. Zecchina, Langmuir 5 (1989) 319.

    Google Scholar 

  28. J.A. Anderson, M.T. Rodrigo, L. Daza and S. Mendioroz, Langmuir 9 (1993) 2485.

    Google Scholar 

  29. R. van Hardeveld and F. Hartog, Appl. Catal. 22 (1972) 75.

    Google Scholar 

  30. T.P. Beebe, P. Gelin and J.T. Yates, Jr., Surf. Sci. 148 (1984) 526.

    Google Scholar 

  31. K. Nakamoto, Infrared Spectra and Raman of Inorganic and Coordination Compounds, 4th Ed. (Wiley, New York, 1986).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mihaylov, M., Hadjiivanov, K. & Knözinger, H. Formation of Ni(CO)4 during the Interaction between CO and Silica-Supported Nickel Catalyst: an FTIR Spectroscopic Study. Catalysis Letters 76, 59–63 (2001). https://doi.org/10.1023/A:1016786023456

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1016786023456

Navigation