Skip to main content
Log in

The effect of aquatic vegetation on turbidity; how important are the filter feeders?

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

A review of the literature suggests that aquatic macrophytes can enhance water clarity and reduce phytoplankton biomass through shading, reduction of nutrient availability, excretion of allelopathic substances and reduction of resuspension. In addition, vegetation fields are reported to enhance grazing on phytoplankton by providing a day-time refuge against fish predation for planktonic filter feeders such as Daphniaand by providing a suitable habitat for macrophyte associated filter feeders such as Sida crystallina, Eurycercus lamellatusand Simocephalus velutus. I use a graphical and a simple mathematical model to explore how top-down control by these grazers may interact with the effect of reduced phytoplankton production due to the other factors mentioned. The analysis suggests that grazing tends to be an all-or-none effect, driving phytoplankton to a very low biomass once a certain threshold level of grazing pressure is exceeded. This threshold level is predicted to increase with the productivity of the phytoplankton. Thus, the model suggests that, in plant beds, productivity reducing factors such as shading and reduced nutrient concentrations can pave the way for top-down control of phytoplankton even by a relatively moderate population of filter-feeders, and that phytoplankton biomass will decrease sharply beyond a critical macrophyte (or grazer) density. Indeed such a discontinuous response is observed in field experiments. Also, the idea that filter feeding cladocerans such as Daphniaplay a key role is in line with the observation that brackish lakes where Daphniadoes not thrive tend to be turbid despite the often dense weed beds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anthoni, U., C. Christophersen, J. O. Madsen, S. Wium-Andersen & N. Jacobsen, 1980. Biologically active sulfur compounds from the green alga Chara globularis. Phytochemistry 19: 1228–1229.

    Google Scholar 

  • Bales, M., B. Moss, G. Phillips, K. Irvine & J. Stansfield, 1993. The changing ecosystem of a shallow brackish lake Hickling Broad Norfolk U.K. II. Long-term trends in water chemistry and ecology and their implications for restoration of the lake. Freshwater Biol. 29: 141–165.

    Google Scholar 

  • Barko, J. W. & W. F. James, 1998. Effects of submerged aquatic macrophytes on nutrient dynamics, sedimentation and resuspension. Structuring Role of Submerged Macrophytes in Lakes 131: 197–214.

    Google Scholar 

  • Canfield, D. E. J., J. V. Shireman, D.E. Colle & Haller, 1984. Prediction of chlorophyll aconcentrations in Florida lakes importance of aquatic macrophytes. Can. J. Fish. aquat. Sci. 41: 497–501.

    Google Scholar 

  • Chambers, P. A. & J. Kalff, 1985. The influence of sediment composition and irradiance on the growth and morphology of Myriophyllum spicatum. Aquat. Bot. 22: 253–264.

    Google Scholar 

  • Chigbu, P. & T. H. Sibley, 1994. Relationship between abundance, growth, egg size and fecundity in a landlocked population of longfin smelt, Spirinchus thaleichthys. J. Fish Biol. 45: 1–15.

    Google Scholar 

  • Davies, J., 1985. Evidence for a diurnal horizontal migration in Daphnia hyalina lacustris. Hydrobiologia 120: 103–106.

    Google Scholar 

  • Dieter, C. D., 1990. The importance of emergent vegetation in reducing sediment resuspension in wetlands. J. Freshwat. Ecol. 5: 467–474.

    Google Scholar 

  • Faafeng, B. A. & M. Mjelde, 1998. Clear and turbid water in shallow Norwegian lakes related to submerged vegetation. Structuring Role of Subbmerged Macrophytes in Lakes 131: 361–368.

    Google Scholar 

  • Forsberg, C., S. Kleiven & T. Willen, 1990. Absence of allelopathic effects of Charaon phytoplankton in situ. Aquat. Bot. 38: 289–294.

    Google Scholar 

  • Godmaire, H. & D. Planas, 1983. Potential effect of Myriophyllum spicatumon the primary production of phytoplankton. In Anonymous (ed.), Periphyton of Freshwater Ecosystems. Dr. W. Junk Publishers. 227–232.

  • Goulder, R., 1969. Interactions between the rates of production of a freshwater macrophyte and phytoplankton in a pond. Oikos 20: 300–309.

    Google Scholar 

  • Gross, E. M. & R. Sütfeld, 1994. Polyphenols with algicidal activity in the submerged macrophyte Myriophyllum spicatumL. Acta Horticultura 381: 710–716.

    Google Scholar 

  • Hasler, A. D. & E. Jones, 1949. Demonstration of the antagonistic action of large aquatic plants on algae and rotifers. Ecology 30: 346–359.

    Google Scholar 

  • Hootsmans, M. J. M. & A. W. Breukelaar, 1990. De invloed van waterplanten op de groei van algen. H2O 23: 264–266.

    Google Scholar 

  • Houthuijzen, R. P., J. J. G. M. Backx & A. D. Buijse, 1993. Exceptionally rapid growth and early maturation of perch in a freshwater lake recently converted from an estuary. J. Fish Biol. 43: 320–324.

    Google Scholar 

  • Hutchinson, G. E., 1975. A Treatise on Limnology. Volume III, Limnological Botany. John Wiley & Sons. New York.

    Google Scholar 

  • Ikusima, I., 1970. Ecological studies on the productivity of aquatic plant communities IV. Light condition and community photosynthetic production. Botanical Magazine Tokyo 83: 330–341.

    Google Scholar 

  • Irvine, K., B. Moss & J. Stansfield, 1990. The potential of artificial refugia for maintaining a community of large-bodied Cladocera against fish predation in a shallow eutrophic lake. Hydrobiologia 200–201: 379–390.

    Google Scholar 

  • Jackson, H. O. & W. C. Starrett, 1959. Turbidity and sedimentation at Lake Chautauqua, Illinois. J. Wildlife Mgmt 23: 157–168.

    Google Scholar 

  • James, W. F. & J. W. Barko, 1990. Macrophyte influences on the zonation of sediment accretion and composition in a northtemperate reservoir. Arch. Hydrobiol. 120: 129–142.

    Google Scholar 

  • Jasser, I., 1995. The influence of macrophytes on a phytoplankton community in experimental conditions. Hydrobiologia 306: 21–32.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, P. Kristensen, M. Søndergaard, E. Mortensen, O. Sortkjaer & K. Olrik, 1990. Fish manipulation as a lake restoration tool in shallow, eutrophic, temperate lakes 2: threshold levels, long-term stability and conclusions. Hydrobiologia 200/201: 219–228.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard, T. L. Lauridsen, L. J. Pedersen & L. Jensen, 1996. Top-down control in freshwater lakes with special emphasis on the role of fish, submerged macrophytes and water depth. Hydrobiologia-in press

  • Jeppesen, E., T. L. Lauridsen, T. Kairesalo & M. R. Perrow, 1998. Impact of submerged macrophytes on fish-zooplankton interactions in lakes. Structuring Role of Subbmerged Macrophytes in Lakes 131: 91–114.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, E. Kanstrup & B. Pedersen, 1997. Macrophytes and turbidity in brackish lakes, with special emphasis on the role of top-down control. In Jeppesen, E. et al. (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer Verlag.

  • Jeppesen, E., M. Søndergaard, E. Kanstrup & B. Petersen, 1994. Does the impact of nutrients on the biological structure and function of brackish and freshwater lakes differ. Hydrobiologia 276: 15–30.

    Google Scholar 

  • Jones, R. C., 1990. The effect of submersed aquatic vegetation on phytoplankton and water quality in the tidal freshwater Potomac River U.S.A. J. Freshwat. Ecol. 5: 279–288.

    Google Scholar 

  • Kairesalo, T., R. Kornijow & E. Luokkanen, 1997. Trophic cascade structuring a plankton community in a strongly vegetated lake littoral. In Jeppesen, E. et al. (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer-Verlag. in prep.

  • Kogan, Sh. I. & G. A. Chinnova, 1972. Relations between Ceratophyllum demersumand some blue-green algae. Hydrobiol. J. (Engl.Transl.Gidrobiol.Zh). 8: 14–19.

    Google Scholar 

  • Kufel, L. & T. Ozimek, 1994. Can Characontrol phosphorus cycling in Lake Luknajno (Poland)? Hydrobiologia 276: 277–283.

    Google Scholar 

  • Lauridsen, T. L. & I. Buenk, 1996. Diel changes in the horizontal distribution of zooplankton in the littoral zone of two shallow eutrophic lakes. in prep.

  • Lauridsen, T. L., E. Jeppesen, M. Sondergaard & D. M. Lodge, 1998. Horizontal migration of zooplankton: predator-mediated use of macrophyte habitat. Structuring Role of Subbmerged Macrophytes in Lakes 131: 233–239.

    Google Scholar 

  • Lauridsen, T. L., L. J. Pedersen, E. Jeppesen & M. Søndergaard, 1996. The importance of macrophyte bed size for cladoceran composition and horizontal migration in a shallow lake. in prep.

  • Ligtvoet, W. & S. A. De Jong, 1995. Ecosystem development in Lake Volkerak-Zoom: concept and strategy. Wat. Sci. Technol. 31: 239–243.

    Google Scholar 

  • Ligtvoet, W. & M. P. Grimm, 1992. Fish in clear water – Fish-stock development and management in Lake Volkerak/Zoom. Proc. Inform. CHO-TNO 46: 69–84.

    Google Scholar 

  • Mjelde, M. & B. A. Faafeng, 1997. Ceratophyllum demersumhampers phytoplankton development in some small Norwegian lakes over a wide range of phosphorus concentrations and geographical latitude. Freshwat. Biol. 37: 355–365.

    Google Scholar 

  • Moore, B. C., W. H. Funk & E. Anderson, 1994. Water quality, fishery & biologic characteristics in a shallow, eutrophic lake with dense macrophyte populations. Lake Reserv. Mgmt 175–188.

  • Moss, B., 1994. Brackish and freshwater shallow lakes – Different systems or variations on the same theme. Hydrobiologia 276: 1–14.

    Google Scholar 

  • Moss, B., J. Stansfield & K. Irvine, 1990. Problems in the restoration of a hypertrophic lake by diversion of a nutrient-rich inflow. Verh. int. Ver. Theor. Angew. Limnol. 24: 568–572.

    Google Scholar 

  • Noy-Meir, I. 1975. Stability of grazing systems an application of predator prey graphs. J. Ecol. 63: 459–482.

    Google Scholar 

  • Paterson, M., 1993. The distribution of microcrustacea in the littoral zone of a freshwater lake. Hydrobiologia 263: 173–183.

    Google Scholar 

  • Paterson, M. J., 1994. Invertebrate predation and the seasonal dynamics of microcrustacea in the littoral zone of a fishless lake. Arch. Hydrobiol. 1–36.

  • Perrow, M. R., B. Moss & J. Stansfield, 1994. Trophic interactions in a shallow lake following a reduction in nutrient loading – a long-term study. Hydrobiologia 276: 43–52.

    Google Scholar 

  • Petticrew, E. L. & J. Kalff, 1992. Water flow and clay retention in submerged macrophyte beds. Can. J. Fish. aquat. Sci 49: 2483–2489.

    Google Scholar 

  • Pokorny, J., J. Kvet, J. P. Ondok, Z. Toul & I. Ostry, 1984. Production-ecological analysis of a plant community dominated by Elodea canadensis. Aquat. Bot. 19: 263–292.

    Google Scholar 

  • Quade, H. W., 1969. Cladoceran faunas associated with aquatic macrophytes in some lakes in northwestern Minnesota. Ecology 50: 170–179.

    Google Scholar 

  • Scheffer, M., 1990. Multiplicity of stable states in freshwater systems. Hydrobiologia 200/201: 475–486.

    Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. 1: Chapman and Hall. London 0–357.

    Google Scholar 

  • Scheffer, M., A. H. Bakema & F. G. Wortelboer, 1993. MEGAPLANT – a simulation model of the dynamics of submerged plants. Aquat. Bot. 45: 341–356.

    Google Scholar 

  • Scheffer, M. & R. J. De Boer, 1995. Implications of spatial heterogeneity for the paradox of enrichment. Ecology 76: 2270–2277.

    Google Scholar 

  • Scheffer, M. & E. Jeppesen, 1998. Alternative stable states. Structuring Role of Subbmerged Macrophytes in Lakes 131: 397–406.

    Google Scholar 

  • Scheffer, M., S. Rinaldi, A. Gragnani, L. R. Mur & E. H. Van Nes, 1997. On the dominance of filamentous cyanobacteria in shallow turbid lakes. Ecology 78: 272–282.

    Google Scholar 

  • Scheffer, M., M. Van den Berg, A. W. Breukelaar, C. Breukers, H. Coops, R. W. Doef & M.-L. Meijer, 1994. Vegetated areas with clear water in turbid shallow lakes. Aquat. Bot. 49: 193–196.

    Google Scholar 

  • Schreiter, T., 1928. Untersuchungen über den Einfluss einer Helodeawucherung auf das Netzplankton des Hirschberger Grossteiches in Böhmer in den Jahren 1921 bis 1925 incl. V. Praze. Prague.-98

  • Schriver, P., J. Bogestrand, E. Jeppesen & M. Søndergaard, 1995. Impact of submerged macrophytes on fish-zooplankton-phytoplankton interactions: Large-scale enclosure experiments in a shallow eutrophic lake. Freshwat. Biol. 33: 255–270.

    Google Scholar 

  • Schutten, J., J. A. Van der Velden & H. Smit, 1994. Submerged macrophytes in the recently freshened lake system Volkerak-Zoom (The Netherlands), 1987–1991. Hydrobiologia 276: 207–218.

    Google Scholar 

  • Skubinna, J. P., T. G. Coon & T. R. Batterson, 1995. Increased abundance and depth of submersed macrophytes in response to decreased turbidity in Saginaw bay, Lake Huron. J. Great Lakes Res. 21: 476–488.

    Google Scholar 

  • Søndergaard, M. & B. Moss, 1998. Impact of submerged macrophytes on phytoplankton in shallow freshwater lakes. Structuring Role of Submerged Macrophytes in Lakes 131: 115–132.

    Google Scholar 

  • Timms, R. M. & B. Moss, 1984. Prevention of growth of potentially dense phytoplankton populations by zooplankton grazing in the presence of zooplanktivorous fish in a shallow wetland ecosystem. Limnol. Oceanogr. 29: 472–486.

    Google Scholar 

  • Van den Berg, M. S., H. Coops, M.-L. Meijer, M. Scheffer & J. Simons, 1997. Clear water associated with a dense Charavegetation in the shallow and turbid Lake Veluwemeer, The Netherlands. In Jeppesen, E. et al. (eds), The structuring role of submerged macrophytes in lakes. Springer-Verlag. in prep.

  • Van Dijk, G. M., A. W. Breukelaar & R. Gijlstra, 1992. Impact of light climate history on seasonal dynamics of a field population of Potamogeton pectinatusL. during a three year period 1986–1988. Aquat. Bot. 43: 17–41.

    Google Scholar 

  • Van Dijk, G. M. & W. Van Vierssen, 1991. Survival of a Potamogeton pectinatusL. population under various light conditions in a shallow eutrophic lake Lake Veluwe in The Netherlands. Aquat. Bot. 39: 121–130.

    Google Scholar 

  • Van Donk, E., R. D. Gulati, A. Iedema & J. T. Meulemans, 1993. Macrophyte-related shifts in the nitrogen and phosphorus contents of the different trophic levels in a biomanipulated shallow lake. Hydrobiologia 19–26.

  • Vant, W. N., R. J. Davies-Colley, J. S. Clayton & B. T. Coffey, 1986. Macrophyte depth limits in north island New-Zealand lakes of differing clarity. Hydrobiologia 137: 55–60.

    Google Scholar 

  • Vuille, T., 1991. Abundance standing crop and production of microcrustacean populations Cladocera, Copepoda, in the littoral zone of Lake Biel Switzerland. Arch. Hydrobiol. 123: 165–186.

    Google Scholar 

  • Wetzel, R. G., 1975. Limnology. W.B.Saunders Co. Philadelphia.

    Google Scholar 

  • Wium-Andersen, S., U. Anthoni, C. Christophersen & G. Houen, 1982. Allelopathic effects on phytoplankton by substances isolated from aquatic macrophytes Charales. Oikos 39: 187–190.

    Google Scholar 

  • Wium-Andersen, S., K. H. Jorgensen, C. Christophersen & U. Anthoni, 1987. Algal growth inhibitors in Sium erectumHuds. Arch. Hydrobiol. 111: 317–320.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scheffer, M. The effect of aquatic vegetation on turbidity; how important are the filter feeders?. Hydrobiologia 408, 307–316 (1999). https://doi.org/10.1023/A:1017011320148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017011320148

Navigation