Skip to main content
Log in

Formation of intermediates during methanol oxidation: A quantitative DEMS study

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Current efficiencies for the formation of CO2 during methanol oxidation at smooth polycrystalline platinum electrodes were determined by differential electrochemical mass spectrometry in a thin layer flow through cell. In all cases, the current efficiencies are below 60%; in particular, values as low as 16% were found in 0.1 M methanol solution at 0.6 V, which shows that a large amount of soluble intermediates (formaldehyde and/or formic acid) are formed. The extent to which these soluble intermediates are further oxidized to CO2 depends on the diffusion conditions. For methanol oxidation a parallel oxidation path via COad is also active. The influence of the surface crystal structure and, in particular, of steps was also studied. Step decoration by foreign metals allowed examination of the effect of cocatalytic metals on well defined model surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Herrero, K. Franaszczuk and A. Wieckowski, J. Phys. Chem. 98 (1994) 5074.

    Google Scholar 

  2. E. Herrero, W. Chrzanowski and A. Wieckowski, J. Phys. Chem. 99 (1995) 10423.

    Google Scholar 

  3. T.D. Jarvi and E.M. Stuve, 'Fundamental Aspects of Vacuum and Electrocatalytic Reactions of Methanol and Formic Acid on Platinum Surfaces, in J. Lipkowski and P.N. Ross (Eds.), 'Electrocatalysis' (Wiley-VCH, New York, 1998), p. 75.

    Google Scholar 

  4. W. Vielstich and X.H. Xia, J. Phys. Chem. 99 (1995) 10421.

    Google Scholar 

  5. W. Vielstich, 'Fuel Cells. Modern Processes for the Electrochemical Production of Energy' (Wiley-Interscience, London New York, 1965).

    Google Scholar 

  6. C. Korzeniewski and C. Childers, J. Phys. Chem. B 102 (1998) 489.

    Google Scholar 

  7. S. Wasmus, J.-T. Wang and R.F. Savinell, J. Electrochem. Soc. 142 (1995) 3825.

    Google Scholar 

  8. P. Berenz, S. Tillmann, H. Massong and H. Baltruschat, Electrochim. Acta 43 (1998) 3035.

    Google Scholar 

  9. H. Massong, S. Tillmann, T. Langkau, E.A. Abd El Meguid and H. Baltruschat, Electrochim. Acta 44 (1998) 1379.

    Google Scholar 

  10. J. Shin and C. Korzeniewski, J. Phys. Chem. 99 (1995) 3419.

    Google Scholar 

  11. C. Lamy, J.M. Leger, J. Clavilier and R. Parsons, J. Electroanal. Chem. 150 (1983) 71.

    Google Scholar 

  12. X.H. Xia, T. Iwasita, F. Ge and W. Vielstich, Electrochim. Acta 41 (1996) 711.

    Google Scholar 

  13. E. Herrero, K. Franaszczuk and A. Wieckowski, J. Phys. Chem. 98 (1994) 5074.

    Google Scholar 

  14. Z. Jusys, H. Massong and H. Baltruschat, J. Electrochem. Soc. 146 (1999) 1093.

    Google Scholar 

  15. H. Baltruschat and U. Schmiemann, Ber. Bunsenges. Phys. Chem. 97 (1993) 452.

    Google Scholar 

  16. H. Baltruschat, Differential electrochemical mass spectrometry as a tool for interfacial studies, in A. Wieckowski (Ed.), 'Interfacial Electrochemistry' (Marcel Dekker, New York, 1999), p. 577.

    Google Scholar 

  17. H. Massong, H. Wang, G. Samjeské and H. Baltruschat, Electrochim. Acta 46 (2000) 701.

    Google Scholar 

  18. D.R. Storm and J.D.E. Koshland, J. Am. Chem. Soc. 94 (1972) 5805.

    Google Scholar 

  19. H.A. Gasteiger, N. Markovic, P.N. Ross and E.J. Cairns, J. Phys. Chem. 97 (1993) 12020.

    Google Scholar 

  20. X. Ren, M.S. Wilson and S. Gottesfeld, J. Electrochem. Soc. 143 (1996) L12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Löffler, T. & Baltruschat, H. Formation of intermediates during methanol oxidation: A quantitative DEMS study. Journal of Applied Electrochemistry 31, 759–765 (2001). https://doi.org/10.1023/A:1017539411059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017539411059

Navigation