Skip to main content
Log in

Mathematical modelling of aluminium cells with prebaked anodes: Part II: Current distribution and influence of sideledge

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The current distribution at the electrodes in an industrial aluminium cell with prebaked anodes was calculated. The difference between the primary and secondary current distribution was determined for three different gaps between anodes or between anode and sidewall (2.5, 10 and 30 cm). The calculated current densities at the vertical sides of the anode were higher for the secondary current distribution than for the primary (almost double at the uppermost part of the anode), while the differences were much smaller at the cathode (6–20%). If the conducting carbon sidelining is exposed to the electrolyte it will draw an average current density of 0.045 A cm−2 for a 30 cm distance to the cathode. If all this current leads to the formation of aluminium carbide with subsequent dissolution into the electrolyte, the sidelining will corrode at a rate of 0.08 cm d−1 of exposure. The influence of the shape and position of the ledge on the anode current distribution was studied. When the distance between the ledge and anode was greater than 15 cm the shape of the sideledge does not affect the anode current densities significantly, while the current density at the upper part of the anode increases with increasing distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. J. Fraser, D. Billinghurst, K. L. Chen and J. T. Keniry, `Light Metals 1989' (edited byP. G. Campbell), TMS, Warrendale, PA (1989), 219-26.

    Google Scholar 

  2. W. W. Hyland, `Light Metals 1984'(edited by J. P. Mc. Geer), TMS, Warrendale, PA (1984), pp. 711-20.

    Google Scholar 

  3. P. A. Solli, T. Haarberg, T. Eggen, E. Skybakmoen and A. Sterten, `Light Metals 1994' (edited by U. Mannweiler), TMS, Warrendale PA (1994), pp. 195-203.

    Google Scholar 

  4. J. Zoric, I. Rousar, J. Thonstad and Z. Kuang, J. Appl. Electrochem. 26 (1996) 795-802.

    Google Scholar 

  5. M. Matlosz, C. Creton, C. Clerc and D. Landolt, J. Electrochem. Soc. 134 (1987) 3015.

    Google Scholar 

  6. M. Sorlie and H. Oye, `Cathodes in Aluminium Electrolysis', Aluminium-Verlag, Dusseldorf (1989).

    Google Scholar 

  7. J. Thonstad and Z. Kuang, J. Appl. Electrochem. 26 (1996)481-86.

    Google Scholar 

  8. D. P. Ziegler, `Light Metals 1991' (edited by E. Rooy), TMS, Warrendale, PA (1991),pp. 363-74.

    Google Scholar 

  9. J. Zoric, I. Rousar and J. Thonstad, J. Appl. Electrochem., submitted.

  10. A. Johnsen, S. T. Kvamme, O. Lindheim and A. Slattavik, Proceedings of the VIII Al Symposium, Slovak-Norwegian Conference on Aluminium Smelting Technology (1995), pp. 143-48.

  11. M. V. Swain and E.R. Seguit, J. Aust. Ceram. Soc. 20 (1984) 9-12.

    Google Scholar 

  12. A. T. Taberaux and A. Fickel, `LightMetals 1994' (edited by U. Mannweiler), TMS, Warrendale, PA (1994), pp. 483-91.

    Google Scholar 

  13. B. J. Welchand A. E. May, 8th Internationale Leichtmetalltagung, Leoben-Wien (1987), pp. 120-25.

  14. W.E. Haupin, J. Met. 23(7) (1971) 41-4.

    Google Scholar 

  15. J. J. J. Chen, C. C. Wei, S. Thomson, B. J. Welchand M. P. Taylor, `Light Metals 1994' (edited by U. Mannweiler), TMS, Warrendale, PA (1994), pp. 285-93.

    Google Scholar 

  16. B. Sulmont and G. Hudault, `Light Metals 1978' (edited by J. Miller), TMS, Warrendale,PA (1978), 73-86.

    Google Scholar 

  17. Y. Arita, N. Urata, H and Ikeuchi, ibid.,, pp. 59-71.

    Google Scholar 

  18. J.N. Bruggeman and D. J Danka, `Light Metals 1990' (edited by M. Bickert), TMS, Warrendale, PA (1990), pp. 203-9.

    Google Scholar 

  19. H. Pfundt, D. Vogelsang and U. Gerling, `Light Metals 1989', TMS, Warrendale, PA(1989), pp. 371-77.

    Google Scholar 

  20. H. A. Ahmed, S. M. El-Raghy, F. A. Elrefaie, S. Read and Z. Bassuny, `LightMetals 1994' (edited by U. Mannweiler, TMS, Warrendale, PA (1994), pp. 333-38.

    Google Scholar 

  21. A. Valles, V. Lenis and M. Rao, `Light Metals 1995' (edited by H.O. Bohner), RMS, Warrendale, PA (1995), pp. 309-13.

    Google Scholar 

  22. K. J. Frazer, M. P. Taylor and A. M. Jenkin, `Light Metals 1990'. (edited by M. Bickert),TMS, Warrendale, PA (1990), pp. 221-26.

    Google Scholar 

  23. W. Schmidt-Hatting, J. M. Blanc, J. C. Bessard and R.V. Kaenel, `Light Metals, 1985', (edited by H.O. Bohner), TMS, Warrendale, PA (1985), pp. 609-24.

    Google Scholar 

  24. J. Zoric, PhD thesis, University of Chemical Technology, Prague (1996).

  25. I. Rousar, K. Micka and A. Kimla `Electrochemical Engineering', Elsevier, Amsterdam Academia, Praha (1986).

    Google Scholar 

  26. JANAFThermochemical Tables, US Department of Commerce, National Bureau of Standards, Washington, DC (1971, 1975).

  27. R. Odegard and A. Sterten, J. Thonstad, `Light Metals 1987' (edited by R. D. Zabreznik),TMS, Warrendale, PA (1987), pp. 295-302.

    Google Scholar 

  28. M. P. Taylor, B. J. Welch and J. T. Keniry, `LightMetals 1983' (edited by E. M. Adkins), TMS, Warrendale, PA (1983), pp. 437-41.

    Google Scholar 

  29. H. Gudbransen, A. Sterten and R. Odegard, `Light Metals 1992' (edited by E.R. Cutshall),TMS, Warrendale, PA (1992), pp. 521-28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zoric, J., Roušar, I., Thonstad, J. et al. Mathematical modelling of aluminium cells with prebaked anodes: Part II: Current distribution and influence of sideledge. Journal of Applied Electrochemistry 27, 928–938 (1997). https://doi.org/10.1023/A:1018401602274

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018401602274

Keywords

Navigation