Skip to main content
Log in

Modelling the PEM fuel cell cathode

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Two models of the cathode of the proton exchange membrane fuel cell, a pseudohomogeneous film model and an agglomerate model, have been compared. The influence of different parameters on the shape of the polarization curves has been shown. Curves simulated by use of the two models and different values of oxygen permeability, effective conductivity and thickness of the active layer as well as thickness of the Nafion® film surrounding agglomerates have been presented and compared with the experimental results. On the basis of the simulations and the SEM study of the structure of the active catalyst layer it has been concluded that the agglomerate model is a better representation of the active catalyst layer than the pseudohomogeneous film model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. A. Ticianelli, C. R. Derouin and S. Srinivasan, J. Electroanal. Chem. 251 (1988) 275.

    Google Scholar 

  2. Idem, J. Electrochem. Soc. 135 (1988) 2209.

    Google Scholar 

  3. M. S. Wilson and S. Gottesfeld, J. Appl. Electrochem. 22 (1992) 1.

    Google Scholar 

  4. Idem, J. Electrochem. Soc. 139 (1992) L28.

    Google Scholar 

  5. T. E. Springer, T. A. Zawodzinski and S. Gottesfeld, ibid. 138 (1991) 2334.

    Google Scholar 

  6. R. F. Savinell and S. D. Frittes, J. Power Sources 22 (1988) 423.

    Google Scholar 

  7. D. Bernardi, J. Electrochem. Soc. 137 (1990) 3334.

    Google Scholar 

  8. D. Bernardi and M Verbrugge, AIChE J. 37 (1991) 1151.

    Google Scholar 

  9. Idem, J. Electrochem. Soc. 139 (1992) 2477.

    Google Scholar 

  10. T. E. Springer, M. S. Wilson and S. Gottesfeld, ibid. 140 (1993) 3513.

    Google Scholar 

  11. D. Bernardi, ibid. 137 (1990) 3344.

    Google Scholar 

  12. T. V. Nguyen and R. E. White, ibid. 140 (1993) 2178.

    Google Scholar 

  13. T. E. Fuller and J. Newman, ibid. 140 (1993)1218.

    Google Scholar 

  14. Y.W. Rho, O.A. Velev, S. Srinivasan and Y. T. Kho, ibid. 141 (1994) 2084.

    Google Scholar 

  15. S. J. Ridge, R. E. White, Y. Tsou, R. N. Beaver and G. A. Eisman, ibid. 136 (1989) 1902.

    Google Scholar 

  16. P. Björnbom, Electrochim. Acta 32 (1987) 115.

    Google Scholar 

  17. R.P. Iszkowski and M.B. Ncutlip, J. Electrochem. Soc. 127 (1980) 1433.

    Google Scholar 

  18. O. Levenspiel, `Chemical Reaction Engineering', 2nd edn, Wiley, New York (1972).

    Google Scholar 

  19. A. Parthasarathy, S. Srinivasan, A. J. Appleby and C. R. Martin, J. Electrochem. Soc. 139 (1992) 2530.

    Google Scholar 

  20. E-TEK Inc., `Gas Diffusion Electrodes Catalyst Materials', Catalogue (1995), Naticks, MA,USA.

    Google Scholar 

  21. K. Broka and P. Ekdunge, J.Appl.Electrochem. 26 (1996).

  22. Y. Sone, P. Ekdunge and D. Simonsson, J. Electrochem. Soc. 143 (1996) 1254.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

BROKA , K., EKDUNGE , P. Modelling the PEM fuel cell cathode. Journal of Applied Electrochemistry 27, 281–289 (1997). https://doi.org/10.1023/A:1018476612810

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018476612810

Keywords

Navigation