Skip to main content
Log in

Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

The present authors previously showed that titanium metal forms a bone-like apatite layer on its surface in a simulated body fluid (SBF), when it has been treated with a NaOH solution to form a sodium titanate hydrogel layer on its surface. This indicates that the NaOH-treated Ti metal bonds to living bone. The gel layer as-formed is, however, mechanically unstable. In the present study, the NaOH-treated Ti metal was heat treated at various temperatures in order to convert the gel layer into a more mechanically stable layer. The gel layer was dehydrated and transformed into an amorphous sodium titanate layer at 400–500°C, fairly densified at 600°C and converted into crystalline sodium titanate and rutile above 700°C. The induction period for the apatite formation on the NaOH-treated Ti metal in SBF increased with the transformation of the surface gel layer by the heat treatment. Ti metal heat treated at 600°C, however, showed a fairly short induction period as well as high mechanical stability, since it was covered with a fairly densified amorphous layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. DE GROOT, R. G. T. GEESINK, C. P. A. T. KLEIN and P. SEREKIAN, J. Biomed. Mater. Res. 21 (1987) 1375.

    Google Scholar 

  2. S. D. COOK, K. A. THOMAS and M. JARCHO, Clin. Orthop.230 (1988) 303.

    Google Scholar 

  3. K. DE GROOT, J. Biomed. Mater. Res. 23 (1989) 1367.

    Google Scholar 

  4. P. DUCHEYNE, S. RADIN, M. HEUGHBAERT and J. C. HEUGHBAERT, Biomaterials 11 (1990) 244.

    Google Scholar 

  5. W. R. LACEFIELD, in ‘‘An Introduction to Bioceramics’’ edited by L. L. Hench and J. Wilson (World Science, Singapore, 1993) p. 223.

    Google Scholar 

  6. H. HERØ, H. WIE, R. B. JØRGENSEN and I. E. RUYTER, J. Biomed. Mater. Res. 28 (1994) 344.

    Google Scholar 

  7. L. TORRISI and G. FOTI, Appl. Phys. Lett. 62 (1993) 237.

    Google Scholar 

  8. C. M. COTELL, Appl. Surf. Sci. 69 (1993) 140.

    Google Scholar 

  9. Y. OTSUKA, M. MATSUURA, N. CHIDA, M. YOSHI NARI, T. SUMII and T. DERAND, Surf. Coat. Technol. 65 (1994) 1049.

    Google Scholar 

  10. T. BRENDEL, A. ENGEL and C. RÜSSEL, J. Mater. Sci.: Mater. Med. 3 (1992) 175.

    Google Scholar 

  11. Q. QUI, P. VINCENT, B. LOWENBERG, M. SAYER and J. E. DAVIES, Cell Mater. 3 (1993) 351.

    Google Scholar 

  12. K. DE GROOT, J. Ceram. Soc. Jpn. 99 (1991) 943.

    Google Scholar 

  13. C. P. A. T. KLEIN, J. G. C. WOLKE and K. DE GROOT, in ‘‘An Introduction to Bioceramics’’ edited by L. L. Hench and J. Wilson (World Science, Singapore, 1993) p. 199.

    Google Scholar 

  14. P. DUCHEYNE, W. VAN RAEMDONCK, J. C. HEUGHBAERT and M. HEUGHBAERT, Biomaterials 7 (1986) 97.

    Google Scholar 

  15. R. G. T. GEESINK, K. DE GROOT and C. P. A. T. KLEIN, Clin. Orthop. 225 (1987) 147.

    Google Scholar 

  16. K. A. THOMAS, J. F. KAY, S. D. COOK and M. JARCHO, J. Biomed. Mater. Res. 21 (1987) 1395.

    Google Scholar 

  17. W. R. LACEFIELD, in ‘‘Bioceramics: Material Characteristics Versus In VitroBehavior’’ edited by P. Ducheyne and J. Lemons (Academic Science, New York, 1988) p. 72.

    Google Scholar 

  18. C. P. A. T. KLEIN, P. PATKA, H. B. M. VAN DER LUBBE, J. G. C. WOLKE and K. DE GROOT, J. Biomed. Mater. Res. 25 (1991) 53.

    Google Scholar 

  19. C. P. A. T. KLEIN, J. G. C. WOLKE, J. M. A. DE BLIEKHOGEWRST and K. DE GROOT, ibid. 28 (1994) 961.

    Google Scholar 

  20. K. A. GROSS and C. C. BERNDT, J. Mater. Sci.: Mater. Med. 5 (1994) 219.

    Google Scholar 

  21. K. A. MANN, A. A. EDIDIN, R. K. KINOSHITA and M. T. MANLEY, J. Appl. Biomater. 5 (1994) 285.

    Google Scholar 

  22. C. Y. CHANG, B. C. WANG, E. CHANG and B. C. WU, J. Mater. Sci.: Mater. Med. 6 (1996) 249.

    Google Scholar 

  23. Idem, ibid. 6 (1996) 258.

  24. L. L. HENCH and A. E. CLARK, in ‘‘Biocompatibility of Orthopedic Implant’’ edited by D. F. Williams, Vol. 2 (CRC Press, Boca Raton, 1982) p. 129.

    Google Scholar 

  25. T. KITSUGI, T. NAKAMURA, T. YAMAMURO, T. KOKUBO, T. SHIBUYA and M. TAKAGI, J. Biomed. Mater. Res. 21 (1987) 1255.

    Google Scholar 

  26. Ö. H. ANDERSON, K. H. KARLSON, K. KANGASNIEMI and A. YLIURPO, Glastechn. Ber. 61 (1988) 300.

    Google Scholar 

  27. T. KOKUBO, Biomaterials 12 (1991) 155.

    Google Scholar 

  28. L. L. HENCH, J. Amer. Ceram. Soc. 74 (1991) 1487.

    Google Scholar 

  29. T. KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J. Biomed. Mater. Res. 24 (1990) 721.

    Google Scholar 

  30. M. R. FILGUERIAS, G. R. TORRE and L. L. HENCH, ibid. 27 (1993) 445.

    Google Scholar 

  31. T. KOKUBO, F. MIYAJI, H. M. KIM and T. NAKAMURA, J. Amer. Ceram. Soc. 79 (1996) 1127.

    Google Scholar 

  32. H. M. KIM, F. MIYAJI, T. KOKUBO and T. NAKAMURA, J. Ceram. Soc. Jpn. 105 (1997) 111.

    Google Scholar 

  33. B. C. BUNKER, C. H. F. PEDEN, D. R. TALLANT, S. L. MARTINEZ and G. L. TURNER, Mater. Res. Soc. Symp. Proc. 121 (1988) 105.

    Google Scholar 

  34. S. SAKKA, F. MIYAJI and K. FUKUMI, J. Non-Cryst. Solids 112 (1989) 64.

    Google Scholar 

  35. F. MIYAJI, T. YOKO, H. KOZUKA and S. SAKKA, J. Mater. Sci. 26 (1989) 248.

    Google Scholar 

  36. M. OCÂNA, J. V. GARCIA-RAMOS and C. J. SERNA, J. Amer. Ceram. Soc. 75 (1992) 2010.

    Google Scholar 

  37. P. LI, C. OHTSUKI, T. KOKUBO, K. NAKANISHI, N. SOGA, T. NAKAMURA, T. YAMAMURO and K. DE GROOT, J. Biomed. Mater. Res. 28 (1994) 7.

    Google Scholar 

  38. P. LI, I. KANGASNIEMI, K. DE GROOT and T. KOKUBO, J. Amer. Ceram. Soc. 77 (1994) 1307.

    Google Scholar 

  39. C. OHTSUKI, T. KOKUBO and T. YAMAMURO, J. Non-Cryst. Solids 143 (1992) 84.

    Google Scholar 

  40. J. GAMBLE, ‘‘Chemical Anatomy Physiology and Pathology of Extracellular Fluid’’, 6th Edn (Harvard University Press, 1967).

  41. W. NEUMAN and M. NEUMAN, ‘‘The Chemical Dynamics of Bone Mineral’’ (University of Chicago, Chicago, 1958).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

KIM , H.M., MIYAJI , F., KOKUBO , T. et al. Effect of heat treatment on apatite-forming ability of Ti metal induced by alkali treatment. Journal of Materials Science: Materials in Medicine 8, 341–347 (1997). https://doi.org/10.1023/A:1018524731409

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018524731409

Keywords

Navigation