Skip to main content
Log in

Solid state synthesis and thermal stability of HAP and HAP – β-TCP composite ceramic powders

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Powders of pure β-tricalcium phosphate (β-TCP), hydroxyapatite (HAP) and a biphasic composite mixture of HAP+β-TCP were prepared by solid state reaction between two commercially available calcium-based precursors namely, tricalcium phosphate (TCP) and calcium hydroxide (Ca(OH)2). These reactants mixed in the molar ratios ranging from 3 : 0 to 3 : 4 (designated T0 to T4) in deionized water, milled and slip-cast into discs were heat treated in the temperature range of 600°C to 1250°C. The products formed were characterized by X-ray diffraction (XRD) and i.r. spectroscopic techniques for identification of phases formed and functional groups present in them. While tricalcium phosphate and calcium hydroxide taken in the molar ratio of 3 : 2 and 3 : 3 resulted in pure HAP when heat treated at 1000°C for 8 h, the 3 : 1 and 3 : 1.5 molar ratio compositions resulted in a biphasic mixture of HAP+β-TCP for similar heat treatments. Heat treatment of 3 : 4 molar ratio composition of tricalcium phosphate and calcium hydroxide at 1000°C yielded HAP with free CaO as the secondary phase. Products of heat treatment at higher temperatures (1150 and 1250°C) for even shorter duration (2 h) while not differing from the products obtained from T0 and T2 cases at 1000°C (pure β-TCP and pure HAP), change in the case of T1, T1.5, T3 and T4 to products with lesser percentages of HAP containing β-TCP (in the case of T1 and T1.5) or CaO (in the case of T3 and T4) as the secondary phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. M. BILTZ and E. D. PELLEGRINO, J. Dent. Res. 62 (1983) 1190.

    Google Scholar 

  2. L. L. HENCH, J. Amer. Ceram. Soc. 74 (1991) 1487.

    Google Scholar 

  3. C. LAVERNIA and J. M. SCHOENUNG, Amer. Ceram. Soc. Bull. 70 (1991) 95.

    Google Scholar 

  4. C. P. A. T. KLEIN, J. G. C. WOLKE, R. C. VRIESDE and J. M. A. DE BLIECK-HOGERVORST, J. Mater. Sci.: Mater. Med. 5 (1994) 569.

    Google Scholar 

  5. J. S. HANKER and B. L. GIMMARA, Science 242 (1988) 885.

    Google Scholar 

  6. B. R. CONSTANTZ, I. C. ISON, M. T. FULMER, R. D. POSER, S. T. SMITH, M. VAN WAGONER, J. ROSS, S. A. GOLDSTEIN, J. B. JUPITER and D. I. ROSENTHAL, ibid. 267 (1995) 1796.

    Google Scholar 

  7. M. JARCHO, C. H. BOLEN, M. B. THOMAS, J. BOBICK, J. F. KAY and R. H. DOREMUS, J. Mater. Sci. 11 (1976) 2027.

    Google Scholar 

  8. M. AKAO, H. AOKI and K. KATO, ibid. 16 (1981) 809.

    Google Scholar 

  9. A. OSAKA, Y. MIURA, K. TAKEUCHI, M. ASADA and K. TAKAHASHI, J. Mater. Sci.: Mater. Med. 2 (1991) 51.

    Google Scholar 

  10. M. AKAO, H. AOKI, K. KATO and A. SATO, J. Mater. Sci. 17 (1982) 343.

    Google Scholar 

  11. A. ROYER, J. C. VIGUIE, M. HEUGHEBAERT and J. C. HEUGHEBAERT, J. Mater. Sci.: Mater. Med. 4 (1993) 76.

    Google Scholar 

  12. K. ISHIKAWA, P. DUCHEYNE and S. RADIN, ibid. 4 (1993) 165.

    Google Scholar 

  13. H. CHAAIR, J. HEUGHEBAERT and M. HEUGHEBAERT, J. Mater. Chem. 5 (1995) 895.

    Google Scholar 

  14. E. G. NORDSTROM and H. KARLSSON, Amer. Ceram. Soc. Bull. 69 (1990) 824.

    Google Scholar 

  15. G. J. J. BECKERS, M. J. A. A. GORIS, R. A. TERPSTRA, K. ZEILSTRA, J. G. C. WOLKE and K. de. GROOT, in “Euro-Ceramics Vol. 3, Engineering ceramics including Bioceramics”, edited by G. de With R. A. Terpstra and R. Metselaar (Elsevier Applied Science, London, 1989) p. 3.26.

    Google Scholar 

  16. E. G. NORDSTROM and K. H. KARLSSON, J. Mater. Sci.: Mater. Med. 1 (1990) 182.

    Google Scholar 

  17. S. R. RADIN and P. DUCHEYNE, J. Bio-med. Mater. Res. 27 (1993) 35.

    Google Scholar 

  18. M. JARCHO, R. L. SALSBURY, M. B. THOMAS and R. H. DOREMUS, J. Mater. Sci. 14 (1979) 142.

    Google Scholar 

  19. JCPDS File No. 9-169, Joint Committee on Powder Diffraction Standards, Swathmore, PA, 1988.

  20. JCPDS File No. 9-432 Joint Committee on Powder Diffraction Standards, Swathmore, PA, 1988.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

RAO , R.R., ROOPA , H.N. & KANNAN , T.S. Solid state synthesis and thermal stability of HAP and HAP – β-TCP composite ceramic powders. Journal of Materials Science: Materials in Medicine 8, 511–518 (1997). https://doi.org/10.1023/A:1018586412270

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018586412270

Keywords

Navigation