Skip to main content
Log in

Electrophoretic deposition of hydroxyapatite

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite powders were prepared by a chemical precipitation method and electrophoretically deposited on Ti6Al4V surgical alloy substrates. The powders were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), particle size distribution and zeta potential measurements. Prior to electrophoretic deposition, anodic films were obtained on Ti6Al4V and studied by the Auger method. It was established that experimental conditions of powder preparation, electric field and stirring have a significant influence on suspension stability and deposit morphology. The deposition yield was studied at various deposition durations and applied voltages. Sintered coatings were studied by SEM and XRD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. P. DUCHEYNE, L. L. HENCH, A. KAGAN II, M. MARTENS, A. BURSENS and J. C. MULIER, J. Biomed. Mater. Res. 14 (1980) 225.

    Google Scholar 

  2. D. P. RIVERO, J. FOX, A. K. SKIPOR, R. M. URBAN and J. O. GALANTE, ibid. 22 (1988) 191.

    Google Scholar 

  3. S. D. COOK, J. F. KAY, K. A. THOMAS and M. JARCHO, J. Oral Maxillof. Implants 2 (1987) 15.

    Google Scholar 

  4. P. DUCHEYNE, W. VAN RAEMDONCK, J. C. HEUGHEBAERT and M. HEUGHEBAERT, Biomaterials 7 (1986) 97.

    Google Scholar 

  5. P. DUCHEYNE, S. RADIN, M. HEUGHEBAERT and J. C. HEUGHEBAERT, ibid. 11 (1990) 244.

    Google Scholar 

  6. C. S. KIM and P. DUCHEYNE, ibid. 12 (1991) 461.

    Google Scholar 

  7. T. UMEGAKI, K. YAMASHITA and T. KANAZAWAMemoirs of Faculty of Technol. Tokyo Metropolitan Univ. 38 (1988) 4003.

    Google Scholar 

  8. A. STOCH and A. BROZEK, Third Euro-Ceramics 3 (1993) 75.

    Google Scholar 

  9. R. DAMODARAN and B. M. MOUDGIL, Colloids and Surfaces A: Physicochem. Engng Aspects 80 (1993) 191.

    Google Scholar 

  10. T. UMEGAKI, Y. HISANO, K. YAMASHITA and T. KANAZAWA, Gypsum & Lime 218 (1989) 24.

    Google Scholar 

  11. F. HARBACH, R. NEEFF, H. NIENBURG and L. WEILER, in Proceedings of 2nd International Conference on Ceramic Powder Processing Science, edited by H. Hausner, G. L. Messing and S. Hirano (Dtsch. Keram. Ges.: Cologne, Germany, 1988) p. 609.

    Google Scholar 

  12. R. NASS, W. STORCH, H. SCHMIDT, F. HARBACH, R. NEEFF and H. NIENBURG in Proceedings of 2nd International Conference on Ceramic Powder Processing Science, edited by H. Hausner, G. L. Messing and S. Hirano (Dtsch. Keram. Ges., Cologne, Germany, 1988) p. 625.

    Google Scholar 

  13. L. GAR-OR, S. LIUBOVICH and S. HABER, J. Electrochem. Soc. 139 (1992) 1078.

    Google Scholar 

  14. M. JARCHO, C. H. BOLEN, M. B. THOMAS, J. BOBICK, J. F. KAY and R. H. DOREMUS, J. Mater. Sci. 11 (1976) 2027.

    Google Scholar 

  15. K. ISHIKAWA, M. KON, S. TENSHIN, Y. ISHIKAWA and N. KUWAYAMA, Chemistry Express 5 (1990) 725.

    Google Scholar 

  16. J. MIZUGUCHI, K. SUMI and T. MUCHI, J. Electrochem. Soc. 130 (1983) 1819.

    Google Scholar 

  17. P. DUCHEYNE, C. S. KIM and S. R. POLLACK, J. Biomed. Mater. Res. 26 (1992) 147.

    Google Scholar 

  18. M. KAGAWA, Y. SYONO, Y. IMAMURA and S. USUI, J. Amer. Ceram. Soc. 69 (1986) C50.

    Google Scholar 

  19. J. H. KENNEDY and A. FOISSY, ibid. 60 (1977) 33.

    Google Scholar 

  20. M. J. SHANE, J. B. TALBOT, B. G. KINNEY, E. SLUZKY and K. R. HESSE, J. Colloid Interface Sci. 165 (1994) 334.

    Google Scholar 

  21. J. K. G. PANITZ, M. T. DUGGER, D. E. PEEBLES, D. R. TALLANT and C. R. HILLS, J. Vac. Sci. Technol. A11 (1993) 1441.

    Google Scholar 

  22. Y. ZHANG, C. J. BRINKER and R. M. CROOKS, Mater. Res. Soc. Symp. Proc. 271 (1992) 465.

    Google Scholar 

  23. R. W. POWERS, Amer. Ceram. Soc. Bull. 65 (1986) 1270.

    Google Scholar 

  24. Idem., J. Electrochem. Soc. 122 (1975) 490.

    Google Scholar 

  25. D. E. CLARK, W. J. DALZELL and D. C. FOLZ, Ceram. Engng. Sci. Proc. 9 (1988) 1111.

    Google Scholar 

  26. J. M. ANDREWS, A. H. COLLINS, D. C. CORNISH and J. DRACASS, Proc. Brit. Ceram. Soc. 12 (1969) 211.

    Google Scholar 

  27. F. LINDNER and A. FELTZ, J. Europ. Ceram. Soc. 11 (1993) 269.

    Google Scholar 

  28. Idem., Solid State Ionics 6365 (1993) 13.

    Google Scholar 

  29. E. V. KOROBKO, in Proceedings of the Conference on Recent Advances in Adaptive and Sensory Materials and Their Applications, Blacksburg, Virginia, edited by C. A. Rogers and R. C. Rogers (Technomic 1992) p. 3.

  30. W. A. PLISKIN and E. E. CONRAD, J. Electrochem. Technol. 2 (1964) 196.

    Google Scholar 

  31. R. J. BROOK, Proc. Brit. Ceram. Soc. 32 (1982) 7.

    Google Scholar 

  32. H. HAHN, J. LOGAS and R. S. AVERBACK, J. Mater. Res. 5 (1990) 609.

    Google Scholar 

  33. S. BEST, W. BONFIELD, J. Mater. Sci. Mater. Med. 5 (1994) 516.

    Google Scholar 

  34. C. CHAI, B. BEN-NISSAN, S. PYKE and L. EVANS, Mater. Manuf. Processes 10 (1995) 205.

    Google Scholar 

  35. A. CIGADA, M. CABRINI and P. PEDEFERRI, J. Mater. Sci. Mater. Med. 3 (1992) 408.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

ZHITOMIRSKY , I., GAL-OR , L. Electrophoretic deposition of hydroxyapatite. Journal of Materials Science: Materials in Medicine 8, 213–219 (1997). https://doi.org/10.1023/A:1018587623231

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018587623231

Keywords

Navigation