Skip to main content
Log in

On the Trend to Equilibrium for Some Dissipative Systems with Slowly Increasing a Priori Bounds

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove convergence to equilibrium with explicit rates for various kinetic equations with relatively bad control of the distribution tails: in particular, Boltzmann-type equations with (smoothed) soft potentials. We compensate the lack of uniform-in-time estimates by the use of precise logarithmic Sobolev-type inequalities, and the assumption that the initial datum decays rapidly at large velocities. Our method not only gives explicit results on the times of convergence, but is also able to cover situations in which compactness arguments apparently do not apply (even mere convergence to equilibrium was an open problem for soft potentials).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Alexandre and C. Villani, On the Boltzmann equation for long-range interactions and the Landau approximation in plasma physics. Work in preparation.

  2. L. Arkeryd, L estimates for the space-homogeneous Boltzmann equation, J. Stat. Phys. 31(2):347–361 (1983).

    Google Scholar 

  3. A. Arnold, P. Markowich, T. Toscani, and A. Unterreiter, On logarithmic Sobolev inequalities, Csiszár–Kullback inequalities, and the rate of convergence to equilibrium for Fokker–Planck type equations. Preprint, 1998.

  4. D. Bakry and M. Emery, Diffusions hypercontractives. In Sém. Proba. XIX, LNM, No. 1123 (Springer, 1985), pp. 177–206.

  5. S. Bobkov and F. Götze, Exponential integrability and transportation cost related to logarithmic sobolev inequalities, J. Funct. Anal. 163(1):1–28 (1999).

    Google Scholar 

  6. E. Carlen and M. Carvalho, Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation, J. Stat. Phys. 67(3–4):575–608 (1992).

    Google Scholar 

  7. E. Carlen and M. Carvalho, Entropy production estimates for Boltzmann equations with physically realistic collision kernels, J. Stat. Phys. 74(3–4):743–782 (1994).

    Google Scholar 

  8. C. Cercignani, The Boltzmann Equation and its Applications(Springer, 1988).

  9. C. Cercignani, R. Illner, and M. Pulvirenti, The Mathematical Theory of Dilute Gases(Springer, 1994).

  10. L. Desvillettes, Some applications of the method of moments for the homogeneous Boltzmann equation. Arch. Rat. Mech. Anal. 123(4):387–395 (1993).

    Google Scholar 

  11. L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Part II: H-theorem and applications (Preprint Univ. Orléans, 1997). To appear in Comm. P.D.E.

  12. L. Desvillettes and C. Villani, On the spatially homogeneous Landau equation for hard potentials. Part I: Existence, uniqueness and smoothness (Preprint ENS Cachan, 1998). To appear in Comm. P.D.E.

  13. R. Holley and D. Stroock, Logarithmic Sobolev inequalities and stochastic Ising models, J. Stat. Phys. 46(5–6):1159–1194 (1987).

    Google Scholar 

  14. P. Lions and C. Villani, Régularité optimale de racines carrées, C.R. Acad. Sci. Paris Série I 321:1537–1541 (1995).

    Google Scholar 

  15. P. Lizorkin, Interpolation of weighted Lp spaces, Dokl. Akad. Nauk. SSSR 222:1 (1975). Trad. Sov. Math. Dokl. 16(3):577–581 (1975).

    Google Scholar 

  16. H. McKean, Entropy is the only increasing functional of Kac's 1-dimensional caricature of a Maxwellian gas, Z. für Wahrscheinlichkeitstheorie 2:167–172 (1963).

    Google Scholar 

  17. H. Risken, The Fokker_Planck Equation, Methods of Solution and Applications, second ed. (Springer-Verlag, Berlin, 1989). 1308 Toscani and Villani

    Google Scholar 

  18. G. Toscani, Entropy production and the rate of convergence to equilibrium for the Fokker–Planck equation. Quarterly of Appl. Math. LVII:521–541 (1999).

    Google Scholar 

  19. G. Toscani and C. Villani, Sharp entropy dissipation bounds and explicit rate of trend to equilibrium for the spatially homogeneous Boltzmann equation, Comm. Math. Phys. 203(3):667–706 (1999).

    Google Scholar 

  20. C. Villani, Contribution ø l'étude mathé matique des équations de Boltzmann et de Landau en théorie cinétique des gaz et des plasmas. PhD thesis (Univ. Paris-Dauphine, 1998).

  21. C. Villani, On a new class of weak solutions for the spatially homogeneous Boltzmann and Landau equations. Arch. Rat. Mech. Anal. 143(3):273–307 (1998).

    Google Scholar 

  22. Wennberg, B. Regularity in the Boltzmann equation and the Radon transform, Comm. P.D.E. 19(11–12):2057–2074 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toscani, G., Villani, C. On the Trend to Equilibrium for Some Dissipative Systems with Slowly Increasing a Priori Bounds. Journal of Statistical Physics 98, 1279–1309 (2000). https://doi.org/10.1023/A:1018623930325

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018623930325

Navigation