Skip to main content
Log in

Hot Corrosion Behavior of CM 247 LC Alloy in Na2SO4 and NaCl Environments

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

Hot corrosion studies of CM 247 LC alloy werecarried out in pure sodium sulfate, as well as sodiumchloride and sodium sulfate mixtures of differentconcentrations at various temperatures. A crucible test was employed to study the suitability of CM 247LC as a gas turbine blade material. It was observed thatbare CM 247 LC was severely corroded in just 4 hr, whileit was completely consumed in 70 hr when tested in 90% Na2SO4 +10% NaCl at 900°C. The results show that a chloridecontaining melt is more corrosive than pure sodiumsulfate. The weight loss is linearly related tot1/2 (time) and temperature in the different environments studied. Thecorroded samples were characterized by EPMA, SEM, XRD,and metallographic techniques. The results show that hotcorrosion of CM 247 LC is an electrochemicalphenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Stringer, Mater. Sci. Technol. 3, 482 (1987).

    Google Scholar 

  2. F. S. Pettit and G. H. Meier, Proc. of Superalloys (1984).

  3. P. Hancock, Mater. Sci. Technol. 3, 356 (1987).

    Google Scholar 

  4. P. Hancock and M. Mallik, in Materials for Advanced Power Engineering, D. Coutsouradis et al., eds., Part I, Kluwer Academic Publishers, Netherlands (1994), p. 685.

    Google Scholar 

  5. E. L. Simmons, G. V. Browning, and H. A. Liebhafsky, Corrosion 11, 505t (1955).

    Google Scholar 

  6. G. Baudo, Coatings Corros. 1, 11 (1977).

    Google Scholar 

  7. A. Rehmel, Werkst. Korros. 19, 750 (1968).

    Google Scholar 

  8. E. Tatar-Maisescu and A. Rehmel, Electrochim. Acta 20, 479 (1975).

    Google Scholar 

  9. A. Rehmel, Electrochim. Acta 21, 853 (1976).

    Google Scholar 

  10. E. Erdos, H. Altorfer, and E. Denzler, Werkst. Korros. 33, 373 (1982).

    Google Scholar 

  11. M. J. Graham, G. I. Sproule, D. Coplan, and M. Cohen, J. Electrochem. Soc. 119, 883 (1972).

    Google Scholar 

  12. M. J. Graham, D. Coplan, and M. Cohen, J. Electrochem. Soc. 119, 1265 (1972).

    Google Scholar 

  13. Y. S. Hwang and R. A. Rapp, J. Electrochem. Soc. 137, 1276 (1990).

    Google Scholar 

  14. R. A. Rapp, Pure Appl. Chem. 62, 113 (1990).

    Google Scholar 

  15. Y. S. Hwang and R. A. Rapp, Corrosion 45, 933 (1989).

    Google Scholar 

  16. J. E. Restall, Proc. 3rd Conference on Gas Turbine Materials in a Marine Environment, University of Bath, England, Session V, paper 10 (1976).

    Google Scholar 

  17. R. L. Jones, K. H. Stern, and S. T. Gadomski, Proc. 3rd Conference on Gas Turbine Materials in a Marine Environment, University of Bath, England, Session V, paper 8 (1976).

    Google Scholar 

  18. Y. Bouris and C. St. John, Oxid. Met. 9, 507 (1975).

    Google Scholar 

  19. B. Hicks, Mater. Sci. Technol. 3, 772 (1987).

    Google Scholar 

  20. J. A. Goebel, F. S. Pettit, and G. W. Goward, Met. Trans. 4, 261 (1973).

    Google Scholar 

  21. H. Morrow, III, D. L. Sponseller, and E. Kalns, Met. Trans. A5, 673 (1974).

    Google Scholar 

  22. M. E. El Dahshan, D. P. Whittle, and J. Springer, Werkst. Korros. 25, 910 (1975).

    Google Scholar 

  23. R. F. Reising, Corrosion 31, 159 (1975).

    Google Scholar 

  24. V. Guttmann and M. Schutz, Proc. High Temperature Alloys for Gas Turbines 1986, W. Betz et al., eds. (Reidel, Dordrecht, 1986), p. 293.

  25. M. Schutz, Mater. Sci. Eng. 121A, 563 (1989).

    Google Scholar 

  26. A. K. Misra, J. Electrochem. Soc. 133, 1037 (1986).

    Google Scholar 

  27. J. F. G. Conde, AGARD Conf. Copenhagen (1972).

  28. R. C. Hurst, J. B. Johnson, M. Davies, and P. Hancock, in Deposition and Corrosion in Gas Turbines, A. B. Hart and A. J. B. Cutler, eds. (London, Applied Science Publishers, 1972).

    Google Scholar 

  29. P. Hancock, Corros. Sci. 18, 527 (1978).

    Google Scholar 

  30. R. H. Barkalow and F. S. Pettit, Proc. 4th Conference on Gas Turbine Materials in a Marine Environment, Annapolis, Maryland, June, 1979.

  31. J. G. Smeggil, A. W. Funkenbuson, and N. S. Bornstein, (Presented at the Spring meeting of the Electrochemical Society, Cincinnati, Ohio, 1984), p. 27.

  32. D. R. Sigler, Oxid. Met. 29, 23 (1988).

    Google Scholar 

  33. J. G. Smeggil and G. C. Peterson, Oxid. Met. 29, 103 (1988).

    Google Scholar 

  34. J. G. Smeggil, Mater. Sci. Eng. 87, 261 (1987).

    Google Scholar 

  35. J. G. Smeggil, A. W. Funkenbuson, and N. S. Bornstein, Met. Trans. 17A, 923 (1986).

    Google Scholar 

  36. I. Gurrappa, Surf. Coat. Technol., submitted.

  37. I. Gurrappa, J. Mater. Sci. Lett., in press.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurrappa, I. Hot Corrosion Behavior of CM 247 LC Alloy in Na2SO4 and NaCl Environments. Oxidation of Metals 51, 353–382 (1999). https://doi.org/10.1023/A:1018831025272

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018831025272

Navigation