Skip to main content
Log in

Condensed Parameters for Characterizing Wideband Mobile Radio Channels

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

Condensed parameters are used for a concisedescription of wideband mobile radio channelmeasurements. The most popular are the delay spread, thecoherence bandwidth, and the delay window. In thispaper, we analyze their definitions, interrelations,and applicability under various circumstances.Similarily, we analyze condensed parameters in theDoppler frequency domain. There are importantdifferences between instantaneous and averaged parameters,and we discuss the meaning of them. We show thatergodicity and WSSUS (wide-sense stationary uncorrelatedscattering) are required so that averageparameters can be defined. For overspread channels, delayspread and coherence bandwidth can be defined, but theyare not meaningful. We demonstrate that the“classical” descriptions, namely delayspread and coherence bandwidth, do not allow a system independentcharacterization of the channel, and we propose a set ofwindow parameters instead. Their meaning for channelcharacterization and system simulation isinvestigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. Bach Anderson, A note on definitions of terms for impulse responses, EUROCOST 231 TD (89) 060, 1989.

  2. P. A. Bello, Characterization of randomly time-variant linear channels, IEEE Trans. Commun. Syst., Vol. 11, 1963, pp. 360-393.

    Google Scholar 

  3. P. A. Bello and B. D. Nelin, The effects of frequency selective fading on the binary error probabilities of incoherent and differentially coherent matched filter receivers, IEEE Trans. Commun. Syst., Vol. 11, 1963, pp. 170-186.

    Google Scholar 

  4. H. Buehler, Estimation of radio channel time dispersion for mobile radio network planning, Ph.D. thesis, INTHFT, TU Wien, 1994.

    Google Scholar 

  5. J. C. I. Chuang, The effects of time rms delay spread on portable radio communications channels with digital modulation, IEEE J. Select. Areas Commun., Vol. SAC-5, 1987, pp. 879-889.

    Google Scholar 

  6. Richard H. Clarke and Wee Lin Khoo, 3-D mobile radio channel statistics, IEEE Trans. Veh. Techn., Vol. 46, 1997, pp. 798-799.

    Google Scholar 

  7. Commission of the European Union, COST207Digital Land Mobile Radio CommunicationsFinal Report.

  8. D. C. Cox, Correlation bandwidth and delay spread multipath propagation statistics for 910 MHz urban mobile-radio channels, IEEE Trans. Commun., Vol. COM-23, 1975, pp. 1271-1280.

    Google Scholar 

  9. I. Crohn, G. Schultes, R. Gahleitner, and E. Bonek, Irreducible error performance of a digital portable communication system in a controlled time-dispersion indoor channel, IEEE J. Select. Areas Commun., Vol. SAC-11, 1993, pp. 1024-1033.

    Google Scholar 

  10. J. P. de Weck, Real-time characterization of wideband mobile radio channels, Ph.D. thesis, INTHFT, TU Wien, 1992.

    Google Scholar 

  11. P. C. F. Eggers, Angular-temporal domain analogies of the shortterm mobile radio propagation channel at the base station, Proc. 7th PIMRC, Taipeh, 1996, pp. 742-746.

  12. M. P. Fitton, A. R. Nix, and M. A. Beach, Evaluation of metrics for characterising the dispersion of the mobile channel, Proc. VTC 96, Atlanta, 1996, pp. 1418-1422.

  13. B. H. Fleury, New bounds for the variation of mean-square-continuous wide-sense-stationary processes, IEEE Trans. Inf. Theory, Vol. 41, 1995, pp. 849-852.

    Google Scholar 

  14. B. H. Fleury, An uncertainty relation for WSS processes and its application to WSSUS systems, IEEE Trans. Commun., Vol. 44, 1996, pp. 1632-1634.

    Google Scholar 

  15. M. J. Gans, A power-spectral theory of propagation in the mobile radio environment, IEEE Trans. Veh. Techn., Vol. 21, 1972, pp. 27-38.

    Google Scholar 

  16. Radio Subsystem Synchronisation, GSM Tech. Spec. 05.10 (Phase 2), ETSI, 1994.

  17. Y. Karasawa, T. Kuroda, and H. Iwai, The equivalent transmissionpath model? a tool for analysing error floor characteristics due to intersymbol interference in Nakagami-Ric e fading environments, IEEE Trans. Veh. Techn., Vol. 46, 1997, pp. 194-202.

    Google Scholar 

  18. W. C. Jakes, Microwave Mobile Communications, IEEE Press, Piscataway, 1974.

    Google Scholar 

  19. G. Kadel, Measurement of wideband micro-and macro-diver sity characteristics of the mobile radio channel, Proc. VTC' 94, 1994, pp. 165-169.

  20. R. Kattenbach, Characterization of time-variant indoor radio channels by means of their system-and correlation functions, Ph.D. thesis (in German), Universit ät Gesamthochs chule Kassel, Shaker-Verlag, 1997.

    Google Scholar 

  21. R. S. Kennedy, Fading Dispersive Communication Channels, Wiley, New York, 1969.

    Google Scholar 

  22. W. Kozek and A. F. Molisch, On the eigenstructure of underspread WSSUS channels, Proc. First Signal Processing Workshop on Signal Processing Advances in Wireless Communications (SPAWC' 97), 1997, pp. 325-328.

  23. W. C. Y. Lee, Mobile Communications Engineering, McGraw-Hill, New York, 1982.

    Google Scholar 

  24. G. Matz and F. Hlawatsch, Time-frequency transfer function calculus of time-varying linear systems based on a generalized underspread theory, Journal of Mathematical Physics, Vol. 39, 1998, pp. 4041-4071.

    Google Scholar 

  25. A. F. Molisch, Statistical properties of the rms delay spread of mobile radio channels with independent Rayleigh-fading paths, IEEE Trans. Vehicular Techn., Vol. 45, 1996, pp. 201-205.

    Google Scholar 

  26. A. F. Molisch, Small-scale statistics of the rms delay spread in fading channels for simulcast and on-frequency repeaters, AEÑ, Vol. 51, 1997, pp. 73-76.

    Google Scholar 

  27. A. F. Molisch, A new method for the computation of the error probability of differential ly detected modulation formats in mobile radio channels? the case of minimum shift keying, Wireless Personal Communications, Vol. 9, 1999, pp. 165-178.

    Google Scholar 

  28. K. H. Tsioumparakis, T. L. Doumi, and J. G. Gardiner, Delay spread statistics in vicinity of same-frequency repeaters, Electronics Lett., Vol. 31, 1995, pp. 1607-1609.

    Google Scholar 

  29. K. H. Tsioumparakis, T. L. Doumi, and J. G. Gardiner, Delay spread statistics in a two-path radio environment, Proc. 46th IEEE Vehicular Techn. Conf., 1996, pp. 642-646.

  30. K. H. Tsioumparakis, T. L. Doumi, and J. G. Gardiner, Delayspread considerations of same-frequency repeaters in wideband channels, IEEE Trans. Vehicular Techn., Vol. 46, 1997, pp. 664-675.

    Google Scholar 

  31. J. D. Parsons, The Mobile Radio Propagation Channel, Holstead Press, 1992.

  32. P. S. Cannon, N. C. Davies, M. J. Angling, V. Jodalen, K. W. Moreland, and B. Lundborg, Initial results from DAMSON, a system to measure multipath, Doppler spread and Doppler shift on distributed HF channels, 9th IEE Conf. Ant. Prop., Vol. 2, 1995, pp. pp104–108.

  33. F. Adachi and J. D. Parsons, Error rate performance of digital FM mobile radio with postdetection diversity. IEEE Trans. Comm., Vol. 37, 1989, pp. 200-210.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molisch, A.F., Steinbauer, M. Condensed Parameters for Characterizing Wideband Mobile Radio Channels. International Journal of Wireless Information Networks 6, 133–154 (1999). https://doi.org/10.1023/A:1018895720076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1018895720076

Keywords

Navigation