Skip to main content
Log in

A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Recently Johansson and Johnstone proved that the distribution of the (properly rescaled) largest principal component of the complex (real) Wishart matrix X*X(X t X) converges to the Tracy–Widom law as n,p (the dimensions of X) tend to ∞ in some ratio n/pγ>0. We extend these results in two directions. First of all, we prove that the joint distribution of the first, second, third, etc. eigenvalues of a Wishart matrix converges (after a proper rescaling) to the Tracy–Widom distribution. Second of all, we explain how the combinatorial machinery developed for Wigner random matrices in refs. 27, 38, and 39 allows to extend the results by Johansson and Johnstone to the case of X with non-Gaussian entries, provided np=O(p 1/3). We also prove that λ max≤(n 1/2+p 1/2)2+O(p 1/2 log(p)) (a.e.) for general γ>0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. R. J. Muirhead, Aspects of Multivariate Statistical Theory (Wiley, New York, 1982).

    Google Scholar 

  2. S. Wilks, Mathematical Statistics (Wiley, New York, 1967).

    Google Scholar 

  3. Z. D. Bai and Y. Q. Yin, Convergence of the semicircle law, Ann. Probab. 16:863-875 (1988).

    Google Scholar 

  4. Z. D. Bai, J. W. Silverstein, and Y. Q. Yin, A note on the largest eigenvalue of a large dimensional sample covariance matrix, J. Mult. Anal. 26:166-168 (1988).

    Google Scholar 

  5. Z. D. Bai, Convergence rate of expected spectral distributions of large random matrices. II. Sample covariance matrices, Ann. Probab. 21:649-672 (1993).

    Google Scholar 

  6. Z. D. Bai and J. W. Silverstein, No eigenvalues outside the support of the limiting spectral distribution of large-dimensional sample covariance matrices, Ann. Probab. 26:316-345 (1998).

    Google Scholar 

  7. Z. D. Bai, Methodologies in spectral analysis of large dimensional random matrices. A review, Statist. Sinica 9:611-677 (1999).

    Google Scholar 

  8. B. V. Bronk, Exponential ensemble for random matrices, J. Math. Phys. 6:228-237 (1965).

    Google Scholar 

  9. A. Edelman, The distribution and moments of the smallest eigenvalue of a random matrix of Wishart type, Linear Algebra Appl. 159:55-80 (1991).

    Google Scholar 

  10. P. J. Forrester, The spectral edge of random matrix ensembles, Nucl. Phys. B. 402:709-728 (1994).

    Google Scholar 

  11. P. J. Forrester, T. Nagao, and G. Honner, Correlations for the orthogonal-unitary and symplectic-unitary transitions at the hard and soft edges, Nucl. Phys. B. 553:601-643 (1999).

    Google Scholar 

  12. S. Geman, A limit theorem for the norm of random matrices, Ann. Probab. 8:252-261 (1980).

    Google Scholar 

  13. A. Guionnet, Large deviation upper bounds and central limit theorems for band matrices and non-commutative functionals of Gaussian large random matrices, preprint (2000).

  14. U. Grenader and J. Silverstein, Spectral analysis of networks with random topologies, SIAM J. Appl. Math. 32:499-519 (1977).

    Google Scholar 

  15. A. T. James, Distribution of matrices variates and latent roots derived from normal samples, Ann. Math. Statist. 35:475-501-237 (1965).

    Google Scholar 

  16. I.M. Johnstone, On the distribution of the largest principal component, Ann. Statist. 29, (2001).

  17. V. Marchenko and L. Pastur, The eigenvalue distribution in some ensembles of random matrices, Math. USSR Sbornik 1:457-483 (1967).

    Google Scholar 

  18. Y. Q. Yin, Z. D. Bai, and P. R. Krishnaiah, On the limit of the largest eigenvalue of a large dimensional sample covariance matrix, Probab. Theory Related Fields 78:509-521 (1988).

    Google Scholar 

  19. K. W. Wachter, The strong limits of random matrix spectra for sample matrices of independent elements, Ann. Probab. 6:1-18 (1978).

    Google Scholar 

  20. J. Silverstein, On the weak limit of the largest eigenvalue of a large dimensional sample covariance matrix, J. Multivariate Anal. 30:307-311 (1989).

    Google Scholar 

  21. K. Johansson, Shape fluctuations and random matrices, Comm. Math. Phys. 209: 437-476, (2000).

    Google Scholar 

  22. C. A. Tracy and H. Widom, Level-spacing distribution and Airy kernel, Comm. Math. Phys. 159:151-174 (1994).

    Google Scholar 

  23. C. A. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles, Comm. Math. Phys. 177:727-754 (1996).

    Google Scholar 

  24. D. Aldous and P. Diaconis, Longest increasing subsequences: From patience sorting to the Baik-Deift-Johansson theorem, Bull. Amer. Math. Soc. (N.S.) 36:413-432 (1999).

    Google Scholar 

  25. P. Deift, Integrable Systems and Combinatorial Theory, Notices Amer. Math. Soc. 47: 631-640 (2000).

    Google Scholar 

  26. A. Soshnikov, Determinantal random point fields, Russian Math. Surveys 55:923-975 (2000).

    Google Scholar 

  27. A. Soshnikov, Universality at the edge of the spectrum in Wigner random matrices, Comm. Math. Phys. 207:697-733 (1999).

    Google Scholar 

  28. L. A. Pastur and M. Shcherbina, Universality of the local eigenvalue statistics for a class of unitary invariant random matrix ensembles, J. Statist. Phys. 86:109-147 (1997).

    Google Scholar 

  29. P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, and X. Zhou, Uniform asymptotics for polynomials orthogonal with respect to varying exponential weights and applications to universality questions in random matrix theory, Comm. Pure Appl. Math. 52:1335-1425, (1999).

    Google Scholar 

  30. P. Bleher and A. Its, Semiclassical asymptotics of orthogonal polynomials, Riemann-Hilbert problem, and universality in the matrix model, Ann. of Math. 150:185-266 (2000).

    Google Scholar 

  31. K. Johansson, Universality of local spacing distributions in certain Hermitian Wigner matrices, Comm. Math. Phys. 215:683-705 (2001).

    Google Scholar 

  32. E. Brézin and A. Zee, Universality of the correlations between eigenvalues of large random matrices, Nuclear Phys. B. 402:613-627 (1993).

    Google Scholar 

  33. E. Kanzieper, V. Frelikher, Spectra of large matrices: a method of study, in Diffusive Waves in Complex Media (Kluwer, Dodrecht, 1999), pp. 165-211.

    Google Scholar 

  34. M. L. Mehta, Random Matrices, 2nd ed. (Academic Press, New York, 1991).

    Google Scholar 

  35. G. Szego, Orthogonal Polynomials, 3rd ed. (American Mathematical Society, 1967).

  36. C. A. Tracy and H. Widom, Correlation functions, cluster functions, and spacing distribution for random matrices, J. Statist. Phys. 92:809-835 (1998).

    Google Scholar 

  37. H. Widom, On the relation between orthogonal, symplectic and unitary matrix ensembles, J. Statist. Phys. 94:347-363 (1999).

    Google Scholar 

  38. Ya. Sinai, A. Soshnikov, Central limit theorem for traces of large random symmetric matrices, Bol. Soc. Brasil. Mat. (N.S.) 29:1-24 (1998).

    Google Scholar 

  39. Ya. Sinai and A. Soshnikov, A refinement of Wigner's semicircle law in a neighborhood of the spectrum edge for random symmetric matrices, Funct. Anal. Appl. 32:114-131 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soshnikov, A. A Note on Universality of the Distribution of the Largest Eigenvalues in Certain Sample Covariance Matrices. Journal of Statistical Physics 108, 1033–1056 (2002). https://doi.org/10.1023/A:1019739414239

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019739414239

Navigation