Skip to main content
Log in

The Law of Corresponding States and Surface Tension of Liquid Metals

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Empirical relationships for the surface tension of liquid metals (LM) are shown to follow from the principle of corresponding states. In order to relate the surface tension of LM to its bulk properties, a formula is derived by scaling with the melting point T m (0) at the atmospheric pressure, p = 0 and the atomic volume Ω m (0) at the melting point as macroscopic parameters for scaling ε and a characterizing the interatomic potential Φ(r)=ε Φ*(r/a). Correlation rules, derived for the surface tension and its temperature coefficient, are discussed and compared with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Stephan, J. Ann. Phys. 29:655 (1886).

    Google Scholar 

  2. V. K. Semenchenko, Surface Phenomena in Metals and Alloys (Pergamon Press, Oxford, 1961), pp. 60–115.

    Google Scholar 

  3. R. Defay, I. Prigogine, and A. Bellemans, Surface Tension and Adsorption (Longmans Green, London, 1966), pp. 145–156.

    Google Scholar 

  4. S. N. Zadumkin, Dokl Akad. Nauk SSSR. 112:453 (1957).

    Google Scholar 

  5. E. Eustathopoulos, B. Drevet, and E. Ricci, J. Crystal Growth. 191:268 (1998).

    Google Scholar 

  6. J. M. Howe, Interfaces in Metals (Wiley, New York, 1997).

    Google Scholar 

  7. T. Iida and R. Guthrie, The Physical Properties of Liquid Metals (Clarendon Press, Oxford, 1993).

    Google Scholar 

  8. A. S. Skapski, J. Chem. Phys. 16:386; 389 (1948).

    Google Scholar 

  9. J. W. Taylor, Metallurgia. 50:161 (1954).

    Google Scholar 

  10. B. C. Allen, Trans Metallurg. AIME. 227:1175 (1963).

    Google Scholar 

  11. C. L. Reynolds, Jr., P. R. Couchman, and F. E. Karasz, Phil. Mag. 34:659 (1976).

    Google Scholar 

  12. B. J. Keene, Int. Mater. Rev. 38:157 (1993).

    Google Scholar 

  13. A. R. Miedema and R. Boom, Z. Metallkd. 69:183 (1978).

    Google Scholar 

  14. J. H. Goldman, J. Nucl. Mater. 125:86 (1984).

    Google Scholar 

  15. J. Bohdansky and H. J. J. Shins, J. Inorg. Nucl. Chem. 29:2172 (1967).

    Google Scholar 

  16. A. Tegetmeier, A. Cröll, and K. W. Benz, J. Crystal Growth. 141:451 (1994).

    Google Scholar 

  17. D. L. Beke, G. Erdelyi, and F. J. Kedves, J. Phys. Chem. Solids. 42:163 (1981).

    Google Scholar 

  18. F. Guinea, J. H. Rose, J. R. Smith, and J. Ferrante, Appl. Phys. Lett. 44:53 (1984).

    Google Scholar 

  19. D. C. Wallace, Phys. Rev. E 56:4179 (1997).

    Google Scholar 

  20. P. Feschotte, Z. Metallkde. 68:448 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Digilov, R.M. The Law of Corresponding States and Surface Tension of Liquid Metals. International Journal of Thermophysics 23, 1381–1390 (2002). https://doi.org/10.1023/A:1019825227792

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019825227792

Navigation