Skip to main content
Log in

Fabrication and characterization of hydroxyapatite reinforced with 20 vol % Ti particles for use as hard tissue replacement

  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

Abstract

Hydroxyapatite(HA)-based composite reinforced with 20 vol % titanium (Ti) particles was fabricated by hot pressing based on the studies of the structural stability of HA phase in HA–Ti composite by means of FTIR spectrometry and X-ray diffractometry. The mechanical properties and biological behaviors of the composite were investigated by mechanical and in vivo studies. The existence of Ti metal phase can promote the dehydration and decomposition of HA ceramic phase into the more stable calcium phosphate phases, such as α–Ca3(PO4)2 (α–TCP) and Ca4O(PO4)2 at high temperatures. Comparing with pure HA ceramic manufactured under the same conditions, HA–20 vol % Ti composite with higher fracture toughness (0.987 MPa m1/2), bending strength (78.59 MPa), work of fracture (12.8J/m2), porosity (9.8%) and lower elastic modulus (75.91 GPa) is more suitable for use as hard tissue replacement. Crack deflection is the chief toughening mechanism in the composite. Histological evaluation by light microscope shows HA–20 vol % Ti composite implant could be partially integrated with newborn bone tissues after 3 weeks and fully osteointegrated at 12 weeks in vivo. The excellent biological properties of HA–20 vol % Ti composite may be contributed to the coexistence of high porosity and the decomposition products of HA phase in the composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Aoki, Science and Medical Applications of Hydroxyapatite, JAAS, Tokyo, 1991.

    Google Scholar 

  2. G. De With, H. J. A. Van Dijk, N. Hattu and K. Prijs, J. Mater. Sci. 16 (1981) 1592.

    Google Scholar 

  3. L. L. Hench, J. Am. Ceram. Soc. 74 (1991) 1487.

    Google Scholar 

  4. D. F. Williams, Mater. Sci. Technol. 3 (1987) 797.

    Google Scholar 

  5. W. Suchanek and M. Yoshimura, J. Mater. Res. 13 (1998) 94.

    Google Scholar 

  6. J. M. Wu and T. S. Yeh, J. Mater. Sci. 23 (1988) 3771.

    Google Scholar 

  7. W. Bonfield, in “Bioceramics: Materials Characteristics vs In Vivo Behavior”, Vol. 523, edited by P. Ducheyne and J. E. Lemons (Annals of New York Academy of Science, New York, 1988) p. 173.

    Google Scholar 

  8. A. J. Ruys, A. Brandwood, B. K. Milthorpe, M. R. Dickson, K. A. Zeigler and C. C. Sorrell, J. Mater. Sci.: Mater. Med. 6 (1995) 297.

    Google Scholar 

  9. W. Suchanck, M. Yashima, M. Kakihana and M. Yoshimura, J. Am. Ceram. Soc. 80 (1997) 2805.

    Google Scholar 

  10. G. De With and A. J. Corbijn, J. Mater. Sci. 24 (1989) 3411.

    Google Scholar 

  11. B. T. Mossman, J. Bignon, M. Corn, A. Seaton and J. B. L. Gee, Science 247 (1990) 294.

    Google Scholar 

  12. J. D. Birchall, D. R. Stanley, M. J. Mockford, G. H. Pigott and P. J. Pinto, J. Mater. Sci. Lett. 7 (1988) 350.

    Google Scholar 

  13. X. Zhang, G. H. M. Gubbels, R. A. Terpstra and R. Metselaar, J. Mater. Sci. 32 (1997) 235.

    Google Scholar 

  14. T. K. Chaki and P. E. Wang, J. Mater. Sci.: Mater. Med. 5 (1994) 533.

    Google Scholar 

  15. M. Takagi, M. Mochida, N. Uchida, K. Saito and K. Uematsu, ibid. 3 (1992) 199.

    Google Scholar 

  16. Y. Fang, D. M. Roy, J. Cheng, R. Roy and D. K. Agrawal, Ceram. Trans. 36 (1993) 397.

    Google Scholar 

  17. J. Li, B. Fartash and L. Hermansson, Interceram. 39 (1990) 20.

    Google Scholar 

  18. H. Y. Juang and M. H. Hon, Mater. Sci. Eng. C2 (1994) 77.

    Google Scholar 

  19. T. Noma, N. Shoji, S. Wada and T. Suzuki, J. Ceram. Soc. Jpn. 100 (1992) 1175.

    Google Scholar 

  20. R. Van Noort, J. Mater. Sci. 22 (1987) 3801.

    Google Scholar 

  21. K. Wang, Mater. Sci. Eng. A213 (1996) 134.

    Google Scholar 

  22. K. A. Gross, C. C. Berndt, P. Stephens and R. Dinnebier, J. Mater. Sci. 33 (1998) 3985.

    Google Scholar 

  23. H. J. Kleebe, E. F. Bres, D. B. Assolant and G. Ziegler, J. Am. Ceram. Soc. 80 (1997) 37.

    Google Scholar 

  24. S. N. Vaidya and V. Sugandhi, J. Mater. Sci. 34 (1999) 3769.

    Google Scholar 

  25. L. G. Ellies, D. G. A. Nelson and J. D. B. Featherstone, J. Biomed. Mater. Res. 22 (1988) 541.

    Google Scholar 

  26. Y. Doi, T. Koda, M. Adachi, N. Wakamatsu, T. Goto, H. Kamemizu, Y. Moriwaki and Y. Suwa, ibid. 29 (1985) 1451.

    Google Scholar 

  27. A. Krajewski, A. Ravaglioli, N. Roveri, A. Bigi and E. Foresti, J. Mater. Sci. 25 (1990) 3203.

    Google Scholar 

  28. R. Z. Legeros, “Calcium Phosphates in Oral Biology and Medicine”, (Karger AG, 1991).

  29. H. P. Klug, “X-ray Diffraction Procedures for Polycrystalline and Amorphous Material”, 2nd edn (New York, 1971) p. 52.

  30. J. M. Zhou, X. D. Zhang, J. Y. Chen, S. X. Zeng and K. De Groot, J. Mater. Sci.: Mater. Med. 4 (1993) 83.

    Google Scholar 

  31. P. E. Wang and T. K. Chaki, ibid. 4 (1993) 150.

    Google Scholar 

  32. P. Van Landuyt, F. Li, J. P. Keustermans, J. M. Steydio, F. Delannay and E. Munting, ibid. 6 (1995) 8.

    Google Scholar 

  33. J. Weng, X. G. Liu, X. D. Zhang and X. Y. Ji, J. Mater. Sci. Lett. 13 (1994) 159.

    Google Scholar 

  34. A. Slosarczyk, E. Stobierska, Z. Paszkiewicz and M. Gawlicki, J. Am. Ceram. Soc. 79 (1996) 2539.

    Google Scholar 

  35. A. Royer, J. C. Viguie, M. Heughebaert and J. C. Heughebaert, J. Mater. Sci.: Mater. Med. 4 (1993) 76.

    Google Scholar 

  36. H. P. Yuan, Z. J. Yang, Y. B. Li, X. D. Zhang, J. D. De Bruijn and K. De Groot, ibid. 9 (1998) 723.

    Google Scholar 

  37. B. Senger, E. F. Bres, J. L. Hutchison, J. C. Voegel and R. M. Frank, Philosophical Magazine A65 (1992) 665.

    Google Scholar 

  38. C. L. Chu, J. C. Zhu, Z. D. Yin and S. D. Wang, Functional Materials 30 (1999) 606.

    Google Scholar 

  39. H. X. Ji and P. M. Marquis, J. Mater. Sci. 28 (1993) 1941.

    Google Scholar 

  40. C. L. Chu, “Fabrication and Microstructure-Properties of Hydroxyapatite/Ti Functionally Graded Biomaterial”, PhD Dissertation, (Harbin Institute of Technology, P. R. China, 2000).

    Google Scholar 

  41. K. T. Faber and A. G. Evans, Acta. Metall. 31 (1983) 565.

    Google Scholar 

  42. D. M. Liu, J. Mater. Sci.: Mater. Med. 8 (1997) 227.

    Google Scholar 

  43. I. H. Arita, V. M. Castano and D. S. Wilkinson, ibid. 6 (1995) 19.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Chu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chu, C., Lin, P., Dong, Y. et al. Fabrication and characterization of hydroxyapatite reinforced with 20 vol % Ti particles for use as hard tissue replacement. Journal of Materials Science: Materials in Medicine 13, 985–992 (2002). https://doi.org/10.1023/A:1019873015772

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1019873015772

Keywords

Navigation