Skip to main content
Log in

Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field

  • Published:
Journal of Computer-Aided Materials Design

Abstract

Molecular dynamics simulations using a recently developed quantum chemistry-based atomistic force field [J. Phys. Chem. B, 103 (1999) 3570 ] were performed in order to obtain unit cell parameters, coefficients of thermal expansion, and heats of sublimation for the three pure crystal polymorphs of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). The predictions for β-, α-, and δ-HMX showed good agreement with the available experimental data. For the case of β-HMX, anisotropic sound speeds were calculated from the molecular dynamics simulation-predicted elastic coefficients and compared with recent Impulsive Stimulated Light Scattering (ISLS) sound speed measurements. The level of agreement is encouraging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For example, Menikoff, R. Granular Explosives and Initiation Sensitivity, LA-UR 99-6023. http://t14web.lanl.gov/Staff/rsm/preprints.html#Initiation.

  2. Gibbs, T.R. and Popolato, A. (Eds.) LASL Explosive Property Data, University of California, Berkely, 1980.

    Google Scholar 

  3. Bedrov, D., Smith, G.D. and Sewell, T.D., J. Chem. Phys., 112 (2000) 7203.

    Article  CAS  Google Scholar 

  4. Bedrov, D., Smith, G.D. and Sewell, T.D., Chem. Phys. Lett., 324 (2000) 64.

    Article  CAS  Google Scholar 

  5. Smith, G.D. and Bharadwaj, R.K., J. Phys. Chem., B103 (1999) 3570.

    Google Scholar 

  6. Kohno, Y., Maekawa, K., Azuma, N., Tsuchioka, T., Hashizume, T. and Imamura, A., Kogyo Kayako, 53 (1992) 227.

    CAS  Google Scholar 

  7. Cady, H.H., Larson, A.C. and Cromer, D.T., Acta Cryst., 16 (1963) 617.

    Article  CAS  Google Scholar 

  8. Cobbledick, R.E. and Small, R.W.H. Acta Cryst., B30 (1974) 1918.

    CAS  Google Scholar 

  9. Smith, G.D., Bharadwaj, R.K., Bedrov, D. and Ayyagari, C., J. Phys. Chem., B103 (1999) 705.

    Google Scholar 

  10. Martyna, G.J., Tuckerman, M.E., Tobias, D.J. and Klein, M.L., Mol. Phys., 87 (1996) 1117.

    CAS  Google Scholar 

  11. Parrinello, M. and Rahman, A., J. Appl. Phys., 52 (1981) 7182.

    Article  CAS  Google Scholar 

  12. Allen, M.P. and Tildesley, D.T., Computer Simulation of Liquids, Oxford, NY, 1987.

  13. Ryckaert, J., Ciccotti, G. and Berendsen, H.G.C., J. Comp. Phys., 23 (1977) 327.

    Article  CAS  Google Scholar 

  14. Dzyabchenko, A.V., Pivina, T.S. and Arnautova, E.A., J. Mol. Structure, 378 (1996) 67.

    Article  CAS  Google Scholar 

  15. Sorescu, D.C., Rice, B.M. and Thompson, D.L., J. Phys. Chem., B102 (1998) 6692.

    Google Scholar 

  16. McCrone, W.C., In Fox, D., Labes, M.M. and Weissberger, A., (Eds.), Physics and Chemistry of the Organic Solid State; Vol. II, Wiley, New York, 1965.

    Google Scholar 

  17. Herrmann, M., Engel, W. and Eisenreich, N., Propellants Explosives Polytechnics, 17 (1992) 190.

    Article  CAS  Google Scholar 

  18. Herrmann, M., Engel, W. and Eisenreich, N., Z. Kristall., 204 (1993) 121.

    Article  CAS  Google Scholar 

  19. Smith, G.D., Yoon, D.Y. and Jaffe, R.L., Macromolecules, 26 (1993) 298.

    Article  CAS  Google Scholar 

  20. Lyman, J.L., Liau, Y-C. and Brand, H.V., Combustion and Flame, accepted.

  21. Rosen, J.M. and Dickinson, C., J. Chem. Eng. Data, 14 (1969) 120.

    Article  CAS  Google Scholar 

  22. Taylor, J.W. and Crookes, R.J., J. Chem. Soc., Faraday Trans., 72 (1976) 723.

    Article  CAS  Google Scholar 

  23. Landau, L.D. and Lifschitz, E.M., Theory of Elasticity, Section 23. Pergammon Press, Oxford, 1970.

    Google Scholar 

  24. Sewell, T.D., Bedrov, D., Menikoff, R. and Smith, G.D. ‘Elastic Properties of HMX’ To appear in Furnish, M.D. (Ed.), Shock Compression of Condensed Matter-2001; Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condense Matter held at Atlanta, GA, June 2001.

  25. Parrinello, M. and Rahman, A., J. Chem. Phys., 76 (1982) 2662.

    Article  CAS  Google Scholar 

  26. Bennett, C.M. and Sewell, T.D., J. Appl. Phys., 88 (2000) 88.

    Article  Google Scholar 

  27. Tsai, S.W., Mechanics of Composite Materials, Part II, Theoretical Aspects, AFML Tech. Rept. AFML-TR-66-149, November 1966.

  28. Zaug, J.M., Proceedings of the Eleventh Symposium (International) on Detonation, Snowmass, Colorado, U.S.A., 1998 p.498 J.M. Short (Ed.).

  29. Menikoff, R. and Sewell, T.D. Combust. Theory Modeling, 6 (2002), 103; Section 4.1.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bedrov, D., Ayyagari, C., Smith, G.D. et al. Molecular dynamics simulations of HMX crystal polymorphs using a flexible molecule force field. Journal of Computer-Aided Materials Design 8, 77–85 (2001). https://doi.org/10.1023/A:1020046817543

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020046817543

Navigation