Skip to main content
Log in

Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review

  • Published:
Biometals Aims and scope Submit manuscript

Abstract

This presentation comprises a review on the use of immobilized algae for wastewater nitrogen, phosphorus and metal removal purposes. Details of the use of immobilized algae, the techniques of immobilization and the effects of immobilization on cell function are included. Particularly relevant in their use for heavy metal removal from wastewaters; upon enriching the biomass in metal, can be recoverd, thereby providing economic advantages. The use of immobilized microalgae in these processes is very adequate and offers significant advantages in bioreactors. The future of this area of algal cell biotechnology is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avery SV, Codd GA, Gadd GM. 1993 Salt-stimulation of caesium accumulation in the euryhaline green microalga, Chlorella salina: Potential relevance to the development of a biological Cs-removal process. J Gen Microbiol 139, 2239-2244.

    Google Scholar 

  • Bailliez C, Largeau C, Casadevall E. 1985 Growth and hydrocarbon production of Botryococcus braunii immobilized in calcium alginate gel. Appl Microbiol Biotechnol 23, 99-105.

    Google Scholar 

  • Bailliez C, Largeau C, Berkaloff C, Casadevall E. 1986 Immobilization of Botryococcus braunii in alginate: influence on chlorophyll content, photosynthetic activity and degeneration during batch cultures. Appl Microbiol Biotechnol 23, 361-366.

    Google Scholar 

  • Bailliez C, Largeau C, Casadevall E, Yang LW, Berkaloff C. 1988 Photosynthesis, growth and hydrogen production of Botryococcus braunii immobilized by entrapment and adsorption in polyurethane foams. Appl Microbiol Biotechnol 29, 141-147.

    Google Scholar 

  • Blanch HW, Vickroy TB, Wilke CR. 1984 Growth of procaryotic cells in hallow-fiber reactors. Ann NY Acad Sci 434, 373-381.

    Google Scholar 

  • Brandenberger H, Widmer F. 1998 A new multinozzle encapsulation/immobilization system to produce uniform beads of alginate. J Biotechnol 63, 73-80.

    Google Scholar 

  • Brierley JA, Brierley CL, Goyak GM. 1986 AMT-BIOCLAIM: a new wastewater treatment and metal recovery technology. In: Lawrences RW, ed. Proc. of the 6th Int. Symp. Biohydrometallurgy. 291-304.

  • Brouers M, Hall DO. 1986 Ammonia and hydrogen production by immobilized cyanobacteria. J Biotechnol 3, 307-321.

    Google Scholar 

  • Brouers M, Dejong H, Shi DJ, Hall DO. 1989 Immobilized cells: An appraisal of the methods and applications of cell immobilization techniques. In: Cresswell, RC, Rees, TAV and Shah, N, eds. Algae and Cyanobacterial Biotechnology. New York: Longman Scientific and Technical Pub; 272-290.

    Google Scholar 

  • Canizares RO, Dominguez AR, Rivas L, Montes MC, Travieso L, Benitez F.1993 Free and immobilized cultures of Spirulina maxima of swine waste treatment. Biotechnol Lett 15, 321-326.

    Google Scholar 

  • Canizares RO, Rivas L, Montes C, Dominguez AR, Travieso L, Benitez F. 1994 Aerated swine-wastewater treatment with kcarrageenan-immobilized Spirulina maxima. Bioresource Technol 47, 89-91.

    Google Scholar 

  • Chevalier P, de la Noüe J. 1985a Wastewater nutrient removal with microalgae immobilized in carrageenan. Enzyme Microb Technol 7, 621-624.

    Google Scholar 

  • Chevalier P, de la Noüe J. 1985b Efficiency of immobilized hyper-concentrated algae for ammonium and orthophosphorus removal from wastewater. Biotechnol Lett 7, 395-400.

    Google Scholar 

  • Cordoba LT, Hernadez EPS, Weiland P. 1995 Final treatment for cattle manure using immobilized microalgae. I. Study of the support media. Res Conserv Recycl 13, 167-175.

    Google Scholar 

  • da Costa ACA, Leite SFG. 1991 Metals biosorption by sodium alginate immobilized Chlorella homosphaera cells. Biotechnol Lett 13, 559-562.

    Google Scholar 

  • Darnall DW. 1991 Removal and recovery of heavy metal ions from wastewaters using a new biosorbents; AlgaSORB. In: Freeman HM and Sferra PR, eds. Innovative Hazardous Waste Treatment Technology Series. Biological Processes 3. Lancaster, Pennsylvania: Tech. Pub. Co.; 65-72.

    Google Scholar 

  • de la Noüe J, de Pauw N. 1988 The potential of microalgal biotechnology: A review of production and uses of microalgae. Biotechnol Adv 6, 725-770.

    Google Scholar 

  • de la Noüe J, Proulx D. 1988a Biological tertiary treatment of urban wastewaters with chitosan-immobilized Phormidium. Appl Microbiol Biotechnol 29, 292-297.

    Google Scholar 

  • de la Noüe J, Proulx D. 1988b Tertiary treatment of urban wastewaters by chitosan-immobilized Phormidium sp. In: Stadler T, Mollion J, Verdus M-C, eds. Algal Biotechnology. London: Elsevier; 159-168.

    Google Scholar 

  • Garbayo I, Braban C, Lobato MV, Vilchez C. 1996 Nitrate uptake by immobilized growing Chlamydomonas reinhardtii cells. In: Wijffels RH, Buitelaar RM, Bucke C, Tramper J, eds. Immobilized Cells: Basics and Applications. Elsevier Science BV; 410-415.

  • Garbisu C, Gil JM, Bazin MJ, Hall, DO, Serra L. 1991 Removal of nitrate from water by foam-immobilized Phormidium laminosum in batch and continuous-flow bioreactors. J Appl Phycol 3, 221-234.

    Google Scholar 

  • Garbisu C, Hall DO, Serra JL. 1992 Nitrate and nitrite uptake by free-living and immobilized N-starved cells of Phormidium laminosum. J Appl Phycol 4, 139-148.

    Google Scholar 

  • Garbisu C, Hall DO, Serra JL. 1993 Removal of phosphate by foam-immobilized Phormidium laminosum. J Chem Technol Biotechnol 57, 181-189.

    Google Scholar 

  • Gil JM, Serra JL. 1993 Nitrate removal by immobilized cells of Phormidium uncinatum in batch culture and a continuous-flow photobioreactor. Appl Microbiol Biotechnol 39, 782-787.

    Google Scholar 

  • Granham GW, Codd GA, Gadd GM. 1992 Accumulation of cobalt, zinc and manganese by the esturine green microalga Chlorella salina immobilized in alginate microbeads. Environ Sci Tech 26, 1764-1770.

    Google Scholar 

  • Hiller UW, Park RB. 1969 Photosynthetic light reactions in chemically fixed Anacystis nidulans, Chlorella pyrenoidosa and Phormidium cruentum. Physiol Plant 44, 535-539.

    Google Scholar 

  • Hulst AC, Tramper J, van't Riet K, Weesterbeek JMM. 1985 A new technique for the production of immobilized biocatalyst in large quantities. Biotechnol Bioeng 27, 870-876.

    Google Scholar 

  • Jeanfils J, Collard F. 1983 Effect of immobilized S. obliquus cells in a matrix in oxygen evolution and fluorescence properties. Eur J Appl Microbiol Biotechnol 17, 254-257.

    Google Scholar 

  • Jeanfils J, Thomas D. 1986 Culture and nitrite uptake in immobilized Scenedesmus obliquus. Appl Microbiol Biotechnol 24, 417-422.

    Google Scholar 

  • Kaya VM, Picard G. 1995 The viability of Scenedesmus bicellularis cells immobilized on alginate screens following nutrient stravation in air at 100% relative humidity. Biotechnol Bioeng 46, 459-464.

    Google Scholar 

  • Kaya VM, Picard G. 1996 Stability of chitosan gels as entrapment matrix of viable Scenedesmus bicellularis cells immobilized on screens for tertiary treatment of wastewater. Bioresource Technol 56, 147-155.

    Google Scholar 

  • Kaya VM, de la Noüe J, Picard G. 1995 A comparative study of four systems for tertiary wastewater treatment by Scenedesmus bicellularis: New technology for immobilization. J Appl Phycol 7, 85-95.

    Google Scholar 

  • Kaya VM, Goulet J, de la Noüe J, Picard G. 1996 Effect of intermittent CO2 enrichment during nutrient starvation on tertiary treatment of wastewater by alginate-immobilized Scenedesmus bicellularis. Enzyme Microb Technol 18, 550-554.

    Google Scholar 

  • Kayno H, Karube I, Matsunaga T, Suzuki S, Nakayama O. 1981 A photochemical fuel cell system using Anabaena N-7363. Eur J Microbiol Biotechnol 12, 1-5.

    Google Scholar 

  • Lau PS, Tam NFY, Wong YS. 1997 Wastewater nutrients (N and P) removal by carrageenan and alginate immobilized Chlorella vulgaris. Environ Technol 18, 945-951.

    Google Scholar 

  • Lau PS, Tam NFY, Wong YS. 1998 Effect of carrageenan immobilization on the physiological activities of Chlorella vulgaris. Bioresource Technol 63, 115-121.

    Google Scholar 

  • Lee CM, Lu C, Lu WM, Chen PC. 1995 Removal of nitrogenous compounds from wastewaters using immobilized cyanobacteria Anabaena CH3. Environ Technol 16, 701-713.

    Google Scholar 

  • Leon R, Galvan F. 1995 Glycerol photoproduction by free and calcium-entrapped cells of Chlamydomonas reinhardtii. J Biotechnol 42, 61-67.

    Google Scholar 

  • Mallick N, Rai LC. 1993 Influence of culture density, pH, organic acids and divalent cations on the removal of nutrients and metals by immobilized Anabaena doliolum and Chlorella vulgaris. World J Microbiol Biotechnol 9, 196-201.

    Google Scholar 

  • Mallick N, Rai LC. 1994 Removal of inorganic ions from wastewater by immobilized microalgae. World J Microbiol Biotechnol 10, 439-443.

    Google Scholar 

  • Mattiasson B. 1983 Immobilized Cells and Organells. Vol. I. Boca Raton: CRC Press; 143 pp.

    Google Scholar 

  • Mattiasson B, Hahn-Hägerdal B. 1983 Utilization of aqueous two-phase systems for generating soluble immobilized preparations of biocatalyst. In: Mattiasson B, ed. Immobilized Cells and Organells. Boca Raton: CRC Press; 121-134.

    Google Scholar 

  • Megharaj M, Pearson HW, Venkateswarlu K. 1992 Removal of nitrogen and phosphorus by immobilized cells of Chlorella vulgaris and Scenedesmus bijugatus isolated from soil. Enzyme Microb Technol 14, 656-658.

    Google Scholar 

  • Mohn FH. 1988 Harvesting of microalgal biomass. In: Borowitzka MA, Borowitzka LJ, eds. Micro-Algal Biotechnology. NY: Cambridge University Press; 395-414.

    Google Scholar 

  • Musgrave SC, Kerby NY, Codd GA, Stewart WDP. 1983 Structural features of calcium alginate entrapped cyanobacteria modified for ammonia production. Eur J Appl Microbiol Biotechnol 17, 133-136.

    Google Scholar 

  • Nakagawa M, Takamura Y, Yagi O. 1986 Isolation and characterization of slime from a cyanobacterium, Microcystis aeruginosa K-3A. Agric Biol Chem 1, 329-337.

    Google Scholar 

  • Oswald WJ. 1988 Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ, eds. Micro-Algal Biotechnology. NY: Cambridge University Press; 305-328.

    Google Scholar 

  • Park RB, Kelly J, Drury S, Sauer K. 1966 The Hill reaction of chloroplasts isolated from glutaryldehyde-fixed spinach leaves. Proc Natl Acad Sci USA 55, 1056-1062.

    Google Scholar 

  • Parker DL, Rai LC, Mallick N, Rai PK, Kumar HD. 1998 Effect of cellular metabolism and viability on metal ion accumulaltion by cultured biomass from a bloom of the cyanobacterium Microcystis aeruginosa. Appl Environ Microbiol 64, 1545-1547.

    Google Scholar 

  • Plude. JL, Parker DL, Schommer OJ, Timmerman RJ, Hagstrom SA, Joers JM, Hnasko R. 1991 Chemical charactrization of polysaccharides from the slime layer of the cyanobacterium Microcystis flosaquae C3-40. Appl Environ Microbiol 57, 1696-1700.

    Google Scholar 

  • Pradhan S, Singh S, Rai LC, Parker DL. 1998 Evaluation of metal biosorption efficiency of laboratory-grown Microcystis under various environmental conditions. J Microbiol Biotechnol 8, 53-60.

    Google Scholar 

  • Rai LC, Mallick N. 1992 Removal and assessment of toxicity of Cu and Fe to Anabaena doliolum and Chlorella vulgaris using free and immobilized cells. World J Microbiol Biotechnol 8, 110-114.

    Google Scholar 

  • Richmond A, Becker EW. 1986 Technological aspects of mass cultivation-A general outline. In: Richmond A, ed. Handbook of Microalgal Mass Culture. Boca Raton: CRC Press Inc.; 245-263.

    Google Scholar 

  • Robinson PK. 1995 Effect of pre-immobilization conditions on phosphate uptake by immobilized Chlorella. Biotechnol Lett 17, 659-662.

    Google Scholar 

  • Robinson PK. 1998 Immobilized algal technology for wastewater treatment purposes. In: Wong Y-S, Tam NFY, eds. Wastewater Treatment with Algae. Berlin: Springer-Verlag & Landes Bioscience; 1-16.

    Google Scholar 

  • Robinson PK, Wilkinson SC. 1994 Removal of aqueous mercury and phosphate by gel-entrapped Chlorella in packed-bed reactors. Enzyme Microb Technol 16, 802-807.

    Google Scholar 

  • Robinson PK, Dainty AL, Goulding KH, Simpkins I, Trevan MD. 1985 Physiology of alginate-immobilized Cholrella. Enzyme Microb Technol 7, 212-216.

    Google Scholar 

  • Robinson PK, Goulding KH, Mak AL, Trevan MD. 1986 Factors affecting the growth characteristics of alginate-entrapped Chlorella. Enzyme Microb Technol 8, 729-733.

    Google Scholar 

  • Robinson PK, Reeve JO, Goulding KH. 1988 Kinetics of phosphorus uptake by immobilized Chlorella. Biotechnol Lett 10, 17-20.

    Google Scholar 

  • Robinson PK, Reeve JO, Goulding KH. 1989 Phosphorus uptake kinetics of immobilized Chlorella in batch and continuous-flow culture. Enzyme Microb Technol 11, 590-596.

    Google Scholar 

  • Santos-Rosa F, Galvan F, Vega JM. 1989 Photoproduction of ammonium by Chlamydomonas reinhardtii cells immobilized in barium alginate: A reactor feasibility study. Appl Microbiol Biotechnol 32, 285-290.

    Google Scholar 

  • Sawayama S, Rao KK, Hall DO. 1998 Nitrate and phosphate removal from water by Phormidium laminosum immobilized on hallow fibres in a photobioreactor. Appl Microbiol Biotechnol 49, 463-468.

    Google Scholar 

  • Singh S, Pradhan S, Rai LC. 2000 Metal removal from single and multimetallic systems by different materials as evaluated by differential pulse anodic stripping voltametry. Process Biochem 36, 175-182.

    Google Scholar 

  • Tam NFY, Wong YS. 2000 Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environ Pollution 107, 145-151.

    Google Scholar 

  • Tam NFY, Lau PS, Wong YS. 1994 Wastewater inorganic N and P removal by immobilized Chlorella vulgaris. Water Sci Technol 30, 369-374.

    Google Scholar 

  • Tam NFY, Wong YS, Simpson CG. 1998 Removal of copper by free and immobilized microalga, Chlorella vulgaris. In: Wong Y-S, Tam NFY, eds. Wastewater Treatment with Algae. Berlin: Springer-Verlag & Landes Bioscience; 17-35.

    Google Scholar 

  • Tampion J, Tampion MD. 1987 Immobilized Cells: Principles and Applications. Cambridge UK: Cambridge University Press; 257 pp.

    Google Scholar 

  • Tamponnet C, Costantino F, Barbontin J-N, Calvayrac R. 1985 Cytological and physiological behaviour of Euglena gracilis cells entrapped in calcium alginate gel. Physiol Plant 63, 277-283.

    Google Scholar 

  • Thakur A, Kumar, HD. 1999 Nitrate, ammonium and phosphate uptake by the immobilized cells of Dunaliella salina. Bull Environ Contam Toxicol 62, 70-78.

    Google Scholar 

  • Travieso L, Benitez F, Dupeiron R. 1992 Sewage treatment using immobilized microalgae. Bioresource Technol 40, 183-187.

    Google Scholar 

  • Travieso L, Benitez F, Weiland P, Sanchez E, Dupeyron R, Dominguez AR. 1996 Experiments on immobilization of microalgae for nutrient removal in wastewater treatments. Bioresource Technol 55, 181-186.

    Google Scholar 

  • Travieso L, Canizares RO, Borja R, Benitez F, Dominuez AR., Dupeyron R, Valiente YV. 1999 Heavy metal removal by microalgae. Bull Environ Contam Toxicol 62, 144-151.

    Google Scholar 

  • Trevan MD, Mak AL. 1988 Immobilized algae and their potential for use as biocatalysts. Trends Biotechnol 6, 68-73.

    Google Scholar 

  • Urrutia I, Serra JL, Lama MJ. 1995 Nitrate removal from water by Senedesmus obliquus immobilized in polymeric foams. Enzyme Microb Technol 17, 200-205.

    Google Scholar 

  • Vilchez C, Vega JM. 1994 Nitrate uptake by Chlamydomonas reinhardtii cells immobilized in calcium alginate. Appl Microbiol Biotechnol 41, 137-141.

    Google Scholar 

  • Vilchez C, Vega JM. 1995 Nitrate uptake by immobilized Chlamydomonas reinhardtii cells growing in airlift reactors. Enzyme Microb Technol 17, 386-390.

    Google Scholar 

  • Vilchez C, Galvan F, Vega JM. 1991 Glycolate photoproduction by free and alginate-entrapped cells of Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 35, 716-719.

    Google Scholar 

  • Volesky B, Prasetyo I. 1994 Cadmium removal in a biosorption column. Biotechnol Bioeng 43, 1010-1015.

    Google Scholar 

  • Wilkinson SC, Goulding KH, Robinson PK. 1990 Mercury removal by immobilized algae in batch culture sytems. J Appl Phycol 2, 223-230.

    Google Scholar 

  • Wilkstrom P, Swajcer E, Brodelius P, Nilsson P, Mosbach K. 1982 Formation of ?-keto acids from amino acids using immobilized bacteria and algae. Biotechnol Lett 4, 153-158.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mallick, N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. Biometals 15, 377–390 (2002). https://doi.org/10.1023/A:1020238520948

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020238520948

Navigation