Skip to main content
Log in

Calculation of the Boundary Layer of a Two-Phase Medium

  • Published:
High Temperature Aims and scope

Abstract

Results are given of the calculations of the turbulent boundary layer of a two-phase mixture consisting of a gas and spherical particles ∼10–6 m in size. The problem formulation is presented, and the concentration of particles on the wall and the heat flux to the wall are determined. The two-phase mixture is treated as Newtonian liquid, and the gas and solid particles which form this mixture are calculated as continuous flows. The calculation of a two-phase flow in the boundary layer is performed with due regard for the effect of the concentration of solid particles on the viscosity and thermal conductivity of a binary mixture in the presence of the forces of interfacial interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Landau, L.D. and Lifshits, E.M., Teoreticheskaya fizika, vol. 6: Gidrodinamika, Moscow: Nauka, 1986. Translated under the title Course of Theoretical Physics, vol. 6: Fluid Mechanics, Oxford: Pergamon, 1987.

    Google Scholar 

  2. Nigmatulin, R.I., Dinamika mnogofaznykh sred (Dynamics of Multiphase Media), Moscow: Nauka, 1987, vol. 1, p. 345.

    Google Scholar 

  3. Soo, S., Fluid Dynamics of Multiphase Systems, Waltham: Blaisdell, 1967. Translated under the title Gidrodinamika mnogofaznykh sistem, Moscow: Inostrannaya Literatura, 1967.

    Google Scholar 

  4. Elghobashi, S.E. and Abou-Arab, T.W., Heat Transfer, 1982, vol. 5, p. 219.

    Google Scholar 

  5. Elghobashi, S.E. and Abou-Arab, T.W., Phys. Fluids, 1983, vol. 26, no. 4, p. 931.

    Google Scholar 

  6. Elghobashi, S.E., Appl. Sci. Res., 1994, vol. 52, p. 309.

    Google Scholar 

  7. Elghobashi, S.E. and Truesdel, T.E., Phys. Fluids A, 1993, vol. 5, p. 1790.

    Google Scholar 

  8. Crow, C.T., Troutt, T.R., and Chung, J.N., Annu. Rev. Fluid Mech., 1996, vol. 28, no. 11, p. 1287.

    Google Scholar 

  9. Podvysotsky, A.M. and Shraiber, A.A., Int. J. Multiphase Flow, 1984, vol. 10, no. 2, p. 195.

    Google Scholar 

  10. Shraiber, A.A., Gavin, L.B., and Yatsenko, V.P., Turbulent Flows in Gas Suspensions, New York: Hemisphere, 1988.

    Google Scholar 

  11. Snyder, W.H. and Lumly, J.L., J. Fluid Mech., 1971, vol. 48, no. 1, p. 41.

    Google Scholar 

  12. Herczinski, R. and Pienkovska, J., Arch. Mech. Stosow., 1975, vol. 27.

  13. Dul'nev, G.N. and Zarichnyak, Yu.P., Teploprovodnost' smesei i kompozitsionnykh materialov (Thermal Conductivity of Mixtures and Composite Materials), Leningrad: Energiya, 1974, p. 240.

    Google Scholar 

  14. Raju, N. and Meiburg, E., Phys. Fluids, 1997, vol. 9, p. 299.

    Google Scholar 

  15. Druzhinin, O.A., Phys. Fluids, 1997, vol. 9, p. 315.

    Google Scholar 

  16. Gourdel, C., Simonin, O., and Brunier, E., Modeling and Simulation of Gas Solid Turbulent Flows with a Binary Mixture of Particles, Proc. 3rd Int. Conf. on Multiphase Flow, ICMF'98, Lyon, France, 1998.

    Google Scholar 

  17. Lilgegren, L.M., Int. J. Multiphase Flow, 1993, vol. 19, no. 3, p. 471.

    Google Scholar 

  18. Shraiber, A.A. and Sternin, L.D., Dvukhfaznye techeniya (Two-Phase Flows), Moscow: Mashinostroenie, 1996, p. 234.

    Google Scholar 

  19. Dmitrenko, A.V., AIAA Pap., 1998, no. 98-3444.

  20. Dmitrenko, A.V., Teploenergetika, 1998, no. 4, p. 45.

    Google Scholar 

  21. Dmitrenko, A.V. and Kalmykov, G.P., Heat and Mass Transfer and Friction under Blowing into Supersonic Region of the Laval Nozzle. 2 Rossiiskaya natsional'naya konferentsiya po teploobmenu (2nd Russ. Nat. Conf. on Heat Transfer), 1998, vol. 2, p. 136.

    Google Scholar 

  22. Polezhaev, Yu.V., Problems of Heat Transfer in Dusty Flows, 2 Rossiiskaya natsional'naya konferentsiya po teploobmenu (2nd Russ. Nat. Conf. on Heat Transfer), 1998, vol. 1, p. 64.

    Google Scholar 

  23. Sukomel, A.S., Tsvetkov, F.F., and Kerimov, R.R., Teploobmen i gidravlicheskoe soprotivlenie pri dvizhenii gazovzvesi v trubakh (Heat Transfer and Hydraulic Resistance during Gas-Suspension Motion in Pipes), Moscow: Energiya, 1977, p. 192.

    Google Scholar 

  24. Boothroyd, R.G., Flowing Gas-Solids Suspensions, London: Chapman and Hall, 1971. Translated under the title Techenie gaza so vzveshennymi chastitsami, Moscow: Mir, 1975, p. pp378.

    Google Scholar 

  25. Gorbis, Z.R., Teploobmen i gidromekhanika dispersnykh skvoznykh potokov (Heat Exchange and Hydromechanics of Disperse Through Flows), Moscow: Energiya, 1970, p. 424.

    Google Scholar 

  26. Shraiber, A.A. and Sternin, L.D., Mnogofaznye techeniya gaza s chastitsami (Multiphase Flows of Gas with Particles), Moscow: Mashinostroenie, 1994, p. 320.

    Google Scholar 

  27. Dmitrenko, A.V., Izv. Vyssh. Uchebn. Zaved. Aviats. Tekh., 1993, no. 1, p. 38.

    Google Scholar 

  28. Zimon, A.D., Adgeziya pyli i poroshkov (Adhesion of Dust and Powder), Moscow: Khimiya, 1976, p. 237.

    Google Scholar 

  29. Byers, R.L. and Calvert, S., Ind. Eng. Chem. Fundam., 1969, vol. 8, no. 4, p. 646.

    Google Scholar 

  30. Zaslavskii, G.M. and Sagdeev, R.Z., Vvedenie v nelineinuyu fiziku (Introduction to Nonlinear Physics), Moscow: Nauka, 1988, p. 368.

    Google Scholar 

  31. Ruelle, D., Physica D, 1983, vol. 7, p. 40.

    Google Scholar 

  32. Ashwin, P. and Nicol, M., Physica D, 1997, vol. 100, p. 58.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dmitrenko, A.V. Calculation of the Boundary Layer of a Two-Phase Medium. High Temperature 40, 706–715 (2002). https://doi.org/10.1023/A:1020436720213

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020436720213

Keywords

Navigation