Skip to main content
Log in

Rate-Limited Steps of Human Oral Absorption and QSAR Studies

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To classify the dissolution and diffusion rate-limited drugs and establish quantitative relationships between absorption and molecular descriptors.

Methods. Absorption consists of kinetic transit processes in which dissolution, diffusion, or perfusion processes can become the rate-limited step. The absorption data of 238 drugs have been classified into either dissolution or diffusion rate-limited based on an equilibrium method developed from solubility, dose, and percentage of absorption. A nonlinear absorption model derived from first-order kinetics has been developed to identify the relationship between percentage of drug absorption and molecular descriptors.

Results. Regression analysis was performed between percentage of absorption and molecular descriptors. The descriptors used were ClogP, molecular polar surface area, the number of hydrogen-bonding acceptors and donors, and Abraham descriptors. Good relationships were found between absorption and Abraham descriptors or ClogP.

Conclusions. The absorption models can predict the following three BCS (Biopharmaceutics Classification Scheme) classes of compounds: class I, high solubility and high permeability; class III, high solubility and low permeability; class IV, low solubility and low permeability. The absorption models overpredict the absorption of class II, low solubility and high permeability compounds because dissolution is the rate-limited step of absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Y. C. Martin, E. Kutter, and V. Austel. Modern Drug Research-Paths to Better and Safer Drugs. Dekker, New York, 1989.

    Google Scholar 

  2. P. O. Gubbins and K. E. Bertch. Drug absorption in gastrointestinal disease and surgery. Clinical pharmacokinetic and therapeutic implications. Clin.Pharmacokinet. 21:431-447 (1991).

    Google Scholar 

  3. M. Gibaldi. Limitations of classical theories of drug absorption. In: Prescott and Nimmo (eds.), Drug Absorption: Proceeding of the Edinburgh International Conference, ADIS Press, Auckland, 1979 pp. 1-5.

    Google Scholar 

  4. G. S. Banker and V. E. Sharma. Advances in controlled gastrointestinal absorption. In: Prescott and Nimmo (eds.), Drug Absorption: Proceeding of the Edinburgh International Conference, ADIS Press, Auckland, 1979 pp. 194-204.

    Google Scholar 

  5. J. B. Dressman, G. L. Amidon, and D. Fleisher. Absorption potential: estimating the fraction absorbed for orally-administered compounds. J.Pharm.Sci. 74:588-589 (1985).

    Google Scholar 

  6. J. B. Dressman, G. L. Amidon, C. Reppas, and V. P. Shah. Dissolution testing as a prognostic tool for oral drug absorption: immediate dosage forms. Pharm.Res. 15:11-22 (1998).

    Google Scholar 

  7. J. C. Dearden. Molecular Structure and Drug Transport.Comprehensive Medicinal Chemistry. C. Hansch (ed.). Pegamar, Oxford, 1990 pp. 375-411.

    Google Scholar 

  8. R. W. Foster. Basic Pharmacology. Reed Educational & Professional Publishing Ltd, Great Britain, 1996.

    Google Scholar 

  9. L. S. Schanker, D. J. Tocco, B. B. Brodie, and C. A. M. Hogben. Absorption of drugs from the rat small intestine. J.Pharmacol.Exp.Ther. 123:81-88 (1958).

    Google Scholar 

  10. J. T. Dolusio, N. F. Billups, L. W. Dittert, E. T. Sugita, and J. V. Swintosky. Drug absorption I: An in situ rat gut technique yielding realistic absorption rates. J.Pharm.Sci. 58:1196-1200 (1969).

    Google Scholar 

  11. S. Yee. In vitro permeability across caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man-fact or myth. Pharm.Res. 14:763-766 (1997).

    Google Scholar 

  12. Y. H. Zhao, J. Le, M. H. Abraham, A. Hersey, P. J. Eddershaw, C. N. Luscombe, D. Butina, G. Beck, B. Sherborne, I. Cooper, and J. A. Platts. Evaluation of human intestinal absorption data for use in QSAR studies and a quantitative relationship obtained with the Abraham descriptors. J.Pharm.Sci. 90:749-784 (2001).

    Google Scholar 

  13. C. A. Lipinski, F. Lombardo, B. W. Dominy, and P. J. Feeney. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv.Drug Deliv.Rev. 23:3-25 (1997).

    Google Scholar 

  14. O. A. Raevsky, V. I. Fetisov, E. P. Trepalina, J. W. McFarland, and K. J. Schaper. Quantitative estimation of drug absorption in humans for passively transported compounds on the basis of their physical-chemical parameters. Quant.Struct.Act.Relat. 19:366-374 (2000).

    Google Scholar 

  15. D. E. Clark. Rapid calculation of polar molecular surface area and its application to the prediction of transport phenomena. 1. Prediction of intestinal absorption. J.Pharm.Sci. 88:807-814 (1999).

    Google Scholar 

  16. K. Palm, P. Stenberg, K. Luthman, and P. Artursson. Polar molecular surface properties predict and the intestinal absorption of drugs in humans. Pharm.Res. 14:568-571 (1997).

    Google Scholar 

  17. M. D. Wessel, P. C. Jurs, J. W. Tolan, and S. M. Muskal. Prediction of human intestinal absorption of drugs from molecular structure. J.Chem.Inf.Comput.Sci. 38:726-735 (1998).

    Google Scholar 

  18. S. D. Krämer. Absorption prediction from physicochemical parameters. PSTT 2:36-42 (1999).

    Google Scholar 

  19. K. J. Schaper. Absorption of ionizable drugs: nonlinear dependence on logP, pKa and pH-quantitative relationships. Quant.Struct.Act.Relat. 1:13-27 (1982).

    Google Scholar 

  20. M. H. Abraham, H. S. Chadha, G. S. Whiting, and R. C. Mitchell. Hydrogen bonding. 32. An analysis of water-octanol and wateralkane partitioning and the delta log P parameter of Seiler. J.Pharm.Sci. 83:1085-1100 (1994).

    Google Scholar 

  21. J. B. Dressman and D. Fleisher. Mixing-tank model for predicting dissolution rate control of oral absorption. J.Pharm.Sci. 75:109-116 (1986).

    Google Scholar 

  22. B. Balon, B. U. Riebesehl, and B. W. Müller. Drug liposome partitioning as a tool for the prediction of human passive intestinal absorption. Pharm.Res. 16:890-896 (1999).

    Google Scholar 

  23. J. A. Platts, M. H. Abraham, A. Hersey, and D. Butina. Estimation of molecular linear free energy relationship descriptors by a group contribution approach. 2. Prediction of partition coefficients. J.Chem.Inf.Comp.Sci. 40:71-80 (2000).

    Google Scholar 

  24. W. K. Sietsema. The absorption oral bioavailability of selected drugs. Int.J.Clin.Pharmacol.Ther.Toxicol. 27:179-211 (1989).

    Google Scholar 

  25. P. Michael Conn and G. F. Gebhart. Essentials of Pharmacology. F.A. Davis Company, Philadelphia, Pennsylvania, 1989.

    Google Scholar 

  26. T. B. Binns. Absorption and Distribution of Drugs. E. & S. Livingstone LTD., Edinburgh and London, 1964.

    Google Scholar 

  27. M. Rowland and T. N. Tozer. Clinical Pharmacokinetics: concepts and Applications. Lea & Febiger, Philadelphia, Pennsylvania, 1995.

    Google Scholar 

  28. W. L. Chiou and A. Barve. Linear correlation of the fraction of oral dose absorbed of 64 drugs between humans and rats. Pharm.Res. 15:1792-1795 (1998).

    Google Scholar 

  29. G. L. Amidon, H. Lennernas, V. P. Shah, and J. R. Crison. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm.Res. 12:413-420 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Abraham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y.H., Abraham, M.H., Le, J. et al. Rate-Limited Steps of Human Oral Absorption and QSAR Studies. Pharm Res 19, 1446–1457 (2002). https://doi.org/10.1023/A:1020444330011

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020444330011

Navigation