Skip to main content
Log in

Trade-offs and coexistence in microbial microcosms

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

Trade-offs among the abilities of organisms to respond to different environmental factors are often assumed to play a major role in the coexistence of species. There has been extensive theoretical study of the role of such trade-offs in ecological communities but it has proven difficult to study such trade-offs experimentally. Microorganisms are ideal model systems with which to experimentally study the causes and consequences of ecological trade-offs. In model communities of E. coli B and T-type bacteriophage, a trade-off in E. coli between resistance to bacteriophage and competitive ability is often observed. This trade-off can allow the coexistence of different ecological types of E. coli. The magnitude of this trade-off affects, in predictable ways, the structure, dynamics and response to environmental change of these communities. Genetic factors, environmental factors, and gene-by-environment interactions determine the magnitude of this trade-off. Environmental control of the magnitude of trade-offs represents one avenue by which environmental change can alter community properties such as invasability, stability and coexistence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Antonovics K & Ellstrand NC (1983) Experimental studies of the evolutionary significance of sexual reproduction. I. A test of the frequency-dependent selection hypothesis. Evolution 38: 103–115.

    Article  Google Scholar 

  • Bergelson J (1994) The effects of genotype and the environment on costs of resistance in lettuce. Am. Natur. 143: 349–359.

    Article  Google Scholar 

  • Bergelson J, Purrington CB, Palm CJ & LopezGutierrez JC (1996) Costs of resistance: A test using transgenic Arabidopsis thaliana. Proc. R. Soc. Lond. Series B. Biolog. Sci. 263: 1659–1663.

    CAS  Google Scholar 

  • Bohannan BJM & Lenski RE (1997) The effect of resource enrichment on a chemostat community of bacteria and phage. Ecology 78: 2303–2315.

    Article  Google Scholar 

  • Bohannan BJM & Lenski RE (1999) Effect of prey heterogeneity on the response of a model food chain to resource enrichment. Am. Natur. 153: 73–82.

    Article  Google Scholar 

  • Bohannan BJM & Lenski RE (2000a) The relative importance of competition and predation varies with productivity in a model community. Am. Natur. 156: 329–340.

    Article  Google Scholar 

  • Bohannan BJM & Lenski RE (2000b) Linking genetic change to community evolution: insights from studies of bacteria and bacteriophage. Ecol. Lett. 3: 362–377.

    Article  Google Scholar 

  • Bohannan BJM, Travisano M & Lenski RE (1999) Epistatic interactions can lower the cost of resistance to multiple consumers. Evolution 53: 292–295.

    Article  Google Scholar 

  • Boots M & Haraguchi Y (1999) The evolution of costly resistance in host-parasite systems. Am. Natur. 153: 359–370.

    Article  Google Scholar 

  • Carlton BC & Brown BJ (1981) Gene mutation. In: Gerhardt P (Ed) Manual ofMethods for General Bacteriology (pp 222–242). American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Chao L & Levin BR (1981) Structured habitats and the evolution of anticompetitor toxins in bacteria. Proc. Nat. Acad. Sci. 78: 6324–6328.

    Article  PubMed  CAS  Google Scholar 

  • Dieckmann U & Doebeli M (1999) On the origin of species by sympatric speciation. Nature 400: 354–357.

    Article  PubMed  CAS  Google Scholar 

  • Dieckmann U, Law R & Metz JAJ (Eds) (2000) The Geometry of Ecological Interactions. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Durrett R & Levin S (1997) Allelopathy in spatially distributed populations. J. Theor. Biol. 185: 165–171.

    Article  PubMed  Google Scholar 

  • Dykhuizen DE (1998) Santa Rosalia revisited: Why are there so many species of bacteria? Antonie van Leeuwenhoek 73: 25–33.

    Article  PubMed  CAS  Google Scholar 

  • Feldgarden M & Riley MA (1999) The phenotypic and fitness effects of colicin resistance in Escherichia coli K-12. Evolution 53: 516–525.

    Article  Google Scholar 

  • Fuhrman JA (1999) Marine viruses and their biogeochemical and ecological effects. Nature 399: 541–548.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg E, Grinius L & Letellier L (1994) Recognition, attachment and injection In: Mathews K (Ed) Molecular Biology of Bacteriophage T4, (pp 347–356). American Society for Microbiology, Washington, D.C.

    Google Scholar 

  • Grover JP (1997) Resource Competition. Chapman and Hall, London.

    Google Scholar 

  • Hantula J, Kurki A, Vuoriranta P & Bamford DH (1991) Ecology of bacteriophage infecting activated sludge bacteria. Appl. Environ. Microbiol. 57: 2147–2151.

    PubMed  CAS  Google Scholar 

  • Holt RD (1977) Predation, apparent competition, and the structure of prey communities. Theoret. Popul. Biol. 11: 197–229.

    Article  Google Scholar 

  • Huisman J & Wessing FJ (2001) Biological conditions for oscillations and chaos generated by multispecies competition. Ecology 82: 2682–2695.

    Article  Google Scholar 

  • Huisman J, Johansson AM, Folmer EO & Weissing FJ (2001) Towards a solution of the plankton paradox: the importance of physiology and life history. Ecol. Lett. 4: 408–411.

    Article  Google Scholar 

  • Iwasa Y, Nakamaru M & Levin SA (1998) Allelopathy of bacteria in a lattice population: Competition between colicin-sensitive and colicin-producing strains. Evolut. Ecol. 12: 785–802.

    Article  Google Scholar 

  • Kerr B, Riley MA, Feldman MW & Bohannan BJM (2002) Local dispersal promotes biodiversity in a real-life game of rock-paperscissors. Nature 418: 171–174.

    Article  PubMed  CAS  Google Scholar 

  • Kraaijeveld AR & Godfray HCJ (1997) Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389: 278–280.

    Article  PubMed  CAS  Google Scholar 

  • Leibold MA (1996) A graphical model of keystone predators in food webs: trophic regulation of abundance, incidence and diversity patterns in communities. Am. Natur. 147: 784–812.

    Article  Google Scholar 

  • Lenski RE (1984) Two-step resistance by Escherichia coli B to bacteriophage T2. Genetics 107: 1–7.

    PubMed  CAS  Google Scholar 

  • Lenski RE (1988a) Experimental studies of pleiotropy and epistasis in Escherichia coli. I. Variation in competitive fitness among mutants resistant to virus T4. Evolution 42: 425–432.

    Article  Google Scholar 

  • Lenski RE (1988b) Experimental studies of pleiotropy and epistasis in Escherichia coli. II. Compensation for maladaptive effects associated with resistance to virus T4. Evolution 42: 433–440.

    Article  Google Scholar 

  • Lenski RE (1988c) Dynamics of interactions between bacteria and virulent bacteriophage. Adv. Microbial. Ecol. 10: 1–44.

    CAS  Google Scholar 

  • Lenski RE & Levin BR (1985) Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am. Natur. 125: 585–602.

    Article  Google Scholar 

  • Lenski RE, Rose MR, Simpson SC & Tadler SC (1991) Long-term experimental evolution in Escherichia coli. I. Adaptation and divergence during 2,000 generations. Am. Natur. 138: 1315–1341.

    Article  Google Scholar 

  • Levin BR, Perrot V & Walker N (2000) Compensatory mutations, antibiotic resistance and the population genetics of adaptive evolution in bacteria. Genetics 154: 985–997.

    PubMed  CAS  Google Scholar 

  • Levin BR, Stewart FM & Chao L (1977) Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage. Am. Natur. 111: 3–24.

    Article  Google Scholar 

  • Lubchenco J (1978) Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. Am. Natur. 112: 23–39.

    Article  Google Scholar 

  • Mitra R & Bhatia CR (1982) Bioenergetic considerations in breeding for insect and pathogen resistance in plants. Euphytica 31: 429–437.

    Article  Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. Am. Natur. 100: 65–75.

    Article  Google Scholar 

  • Simms EL (1992) Costs of plant resistance to herbivory. In: Fritz RS & Simms EL (Eds) Plant Resistance to Herbivores and Pathogens (pp 392–425). University of Chicago Press, Chicago.

    Google Scholar 

  • Tan JSH & Reanney DC (1976) Interactions between bacteriophages and bacteria in soil. Soil Biol. Biochem. 8: 145.

    Article  Google Scholar 

  • Thompsol JN (1989) Concepts of coevolution. TREE 4: 179–183.

    Google Scholar 

  • Tilman D (2000) Causes, consequences and ethics of biodiversity. Nature 405: 208–211.

    Article  PubMed  CAS  Google Scholar 

  • Tilman D & Kareiva P (Eds) (1997). Spatial Ecology. Princeton University Press, Princeton.

    Google Scholar 

  • Travisano M & Rainey P (2000) Studies of adaptive radiation using model microbial systems. Am. Natur. 156: S35–S44.

    Article  Google Scholar 

  • Waterbury JB & Valois FW (1993) Resistance to co-occurring phages enables marine Synechococcus communities to coexist with cyanophages abundant in seawater. Appl. Environ. Microbiol. 59: 3393–3399.

    PubMed  Google Scholar 

  • Whitman WB, Coleman DC & Wiebe WJ (1998) Prokaryotes: The unseen majority. Proc. Nat. Acad. Sci. 95: 6578–6581.

    Article  PubMed  CAS  Google Scholar 

  • Wommack KE & Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol. Molec. Biol. Rev. 64: 69–114.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brendan J.M. Bohannan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohannan, B.J., Kerr, B., Jessup, C.M. et al. Trade-offs and coexistence in microbial microcosms. Antonie Van Leeuwenhoek 81, 107–115 (2002). https://doi.org/10.1023/A:1020585711378

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020585711378

Navigation