Skip to main content
Log in

Chemical Ecology of Marine Microbial Defense

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

Because marine animals and plants are continuously exposed to a large diversity of potentially harmful microorganisms, it seems reasonable to hypothesize that potential hosts might produce bioactive compounds to deter microbial attack. However, little is known about how host metabolites may defend against harmful microbes or facilitate the growth or colonization of helpful symbionts. While there is a large body of literature describing the antimicrobial activities of marine secondary metabolites, we are only now beginning to understand how these compounds function in an ecological context. For example, there is mounting evidence that nontoxic concentrations of secondary metabolites can have significant effects on microbial behavior, suggesting that certain host–microbe interactions are chemically mediated. Herein, we discuss the importance of employing ecologically relevant assays to elucidate microbiological effects and the need to develop a better understanding of host–microbe associations within an ecologically realistic context. Continued research in this field along with improved techniques will certainly provide further insight into how microbes have influenced the evolution of secondary metabolite production in marine organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Acar, J. F. 1980. The disc susceptibility test, pp. 24–54, in V. Lorian (ed.). Antibiotics in Laboratory Medicine. Williams and Wilkins, Baltimore, Maryland.

    Google Scholar 

  • Amsler, C. D. and Iken, K. B. 2001. Chemokinesis and chemotaxis in marine bacteria and algae, pp. 413–430, in J. B. McClintock and B. J. Baker (eds.). Marine Chemical Ecology. CRC Press LLC, Boca Raton, Florida.

    Google Scholar 

  • Andrews, J. H. 1976. The pathology of marine algae. Biol. Rev. 51:211–253.

    Google Scholar 

  • Andrews, J. H. 1979. Pathology of seaweeds. Experientia 35:429–570.

    Google Scholar 

  • Armstrong, D. A., Buchanan, D. V., and Caldwell, R. S. 1976. A mycosis caused by Lagenidium sp. in laboratory-reared larvae of the dungeness crab, Cancer magister, and possible chemical treatments. J. Invert. Pathol. 28:329–336.

    Google Scholar 

  • Azumi, K., Yoshimizo, M., Suzuki, S., Ezura, Y., and Yokosawa, H. 1990. Inhibitory effect of halocyamine, an antimicrobial substance from ascidian hemocytes, on the growth of fish viruses and marine bacteria. Experientia 46:1066–1068. MARINE MICROBIAL DEFENSE 1983

    Google Scholar 

  • Baker, J. H. and Orr, D. R. 1986. Distribution of epiphytic bacteria on freshwater plants. J. Ecol. 74:155–165.

    Google Scholar 

  • Bakus, G. J., Schulte, B., Jhu, S., Wright, M., Green, G., and Gomez, P. 1985. Antibiosis and antifouling in marine sponges: laboratory versus field studies, pp. 102–108, in K. Rützler (ed.). New Perspectives in Sponge Biology, Smithsonian Institution Press, Washington, DC.

    Google Scholar 

  • Bremer, G. B. 1995. Lower marine fungi (labyrinthulomycetes) and the decay of mangrove leaf litter. Hydrobiologia 295:89–95.

    Google Scholar 

  • Bryan, P. J., McClintock, J. B., Watts, S. A., Marion, K., and Hopkins, T. S. 1994. Antimicrobial activity of ethanolic body-wall extracts of echinoderms from the northern Gulf of Mexico, pp. 17–23, in B. David, A. Guille, J. P. Feral, and M. Roux (eds.). Echinoderms Through Time. Rotterdam, Netherlands.

    Google Scholar 

  • Bryan, P., Rittschof, D., and McClintock, J. B. 1996. Bioactivity of echinoderm ehtanolic bodywall extractas: an assessmetn of marine bacterial attachment and macroinvertebrate larval settlement. J. Exp. Mar. Biol. Ecol. 196:79–96.

    Google Scholar 

  • CartÉ, B. K. 1996. Biomedical potential of marine natural products. Bioscience 46:271–286.

    Google Scholar 

  • Chet, I. and Mitchell, R. 1976. Ecological aspects of microbial chemotactic behavior. Annu. Rev. Microbiol. 30:221–239.

    Google Scholar 

  • Chet, I., Asketh, P., and Mitchell, R. 1975. Repulsion of bacteria from marine surfaces. Appl. Microbiol. 30:1043–1045.

    Google Scholar 

  • Correa, J. A. 1997. Infectious diseases of marine algae: current knowledge and approaches. Prog. Phycol. Res. 12:149–180.

    Google Scholar 

  • Correa, J. A. and Sanchez, P. 1996. Ecological aspects of algal infectious diseases. Hydrobiologia 326/327:89–95.

    Google Scholar 

  • Davis, A. R., Targett, N. M., McConnell, O. J., and Young, C.M. 1989. Epibiosis of marine algae and benthic invertebrates: natural products chemistry and other mechanisms inhibiting settlement and overgrowth. Bioorg. Mar. Chem. 3:85–114.

    Google Scholar 

  • De Nys, R., Wright, A. D., Konig, G. M., and Sticher, O. 1993. New halogenated furanones from the marine alga Delisea pulchra (cf. fimbriata). Tetrahedron 49: 11213–11220.

    Google Scholar 

  • De Nys, R., Steinberg, P. D., Rogers, C. N., Charlton, T. S., and Duncan, M.W. 1996. Quantitative variation of secondary metabolites in the sea hare Aplysia parvula and its host plant, Delisia pulchra. Mar. Ecol. Prog. Ser. 130:135–146.

    Google Scholar 

  • De Nys, R., Dworjanyn, S. A., and Steinberg, P. D. 1998. A new method for determining surface concentrations of marine natural products on seaweeds. Mar. Ecol. Prog. Ser. 162:79–87.

    Google Scholar 

  • Fisher, W. S., Nilson, E. H., Steenberger, J. F., and Lightner, D. V. 1978. Microbial diseases of cultured Lobsters: a review. Aquaculture 14:115–140.

    Google Scholar 

  • Fletcher, M. 1996. Bacterial attachment in aquatic environments:Adiversity of surfaces and adhesion strategies, pp. 1–24, in M. Fletcher (ed.). Bacterial Adhesion: Molecular and Ecological Diversity. John Wiley & Sons, New York.

    Google Scholar 

  • Flower, N. E., Geddes, A. J., and Rudall, K. M. 1969. Ultrastructure of the fibrous protein form the egg capsules of the whelk Buccinum undatum. J. Ultrastruct. Res. 26:262–273.

    Google Scholar 

  • Gil-Turnes, S. and Fenical W. 1992. Embryos of Homarus americanus are protected by epibitic bacteria. Biol. Bull. 182:105–108.

    Google Scholar 

  • Gil-Turnes, S., Hay M. E., and Fenical W. 1989. Symbiotic marine bacteria chemically defend crustacean embryos from a pathogenic fungus. Science 246:116–118.

    Google Scholar 

  • Givskov, M., De Nys, R., Manefield, M., Gram, L., Maximilien, R., Eberl, L., Molin, S., Steinberg, P. D., and Kjelleberg, S. 1996. Eukaryotic interference with homserine lactone mediated prokaryotic signaling. J. Bacteriol. 178:6618–6622.

    Google Scholar 

  • Harborne, J. B. 1977. Flavonoid sulfates: A new class of natural products of ecological significance in plants. Prog. Phytochem. 4:189–208.

    Google Scholar 

  • Harborne, J. B. 2001. Twenty-five years of chemical ecology. Nat. Prod. Rep. 18:361–379. 1984 ENGEL, JENSEN, AND FENICAL

    Google Scholar 

  • Hay, M. E. 1996. Marine chemical ecology: what's known and what's next? J. Exp. Mar. Biol. Ecol. 200:103–134.

    Google Scholar 

  • Hay, M. E. and Fenical, W. 1988. Marine plant–herbivore interactions: the ecology of chemical defense. Annu. Rev. Ecol. Syst. 19:111–145.

    Google Scholar 

  • Hunt, S. 1966. Carbohydrate and amino acid composition of the egg capsule of the whelk, Buccinum undatum. Nature 210:436–437.

    Google Scholar 

  • Jenkins, K. M., Jensen, P. R., and Fenical W. 1998. Bioassays with marine microorganisms, pp. 1–38, in K. F. Haynes and J. G. Millar (eds.). Methods in Chemical Ecology, Chapman and Hall, New York.

    Google Scholar 

  • Jensen, P. R., Jenkins, K. M., Porter, D., and Fenical, W. 1998. Evidence that a new antibiotic flavone glycoside chemically defends the sea grass Thalassia testudinum against zoosporic fungi. Appl. Environ. Microbiol. 64:1490–1496.

    Google Scholar 

  • Kazlauskas, R., Murphy, P. T., Quinn, R. J., and Wells, R. J. 1977. A new class of halogenated lactones from the red alga Delisea fimbriata (Bonnemaisoniaceae). Tetrahedron Lett. 1:37–40.

    Google Scholar 

  • Kim, K. 1994. Antimicrobial activity in gorgonian corals (Coelenterata, Octocorallia). Coral Reefs 13:75–80.

    Google Scholar 

  • Kjelleberg, S. and Steinberg, P. D. 2002. Defenses against bacterial colonisation of mairne plants, pp. 152–172, in S. Society Press. St. Paul, Minnesota.

    Google Scholar 

  • Kjelleberg, S., Steinberg, P., Givskov, M., Gram, L., Manefield, M., and De Nys, R. 1997. Do marine natural products interfere with prokaryotic AHL regulatory systems? Aquat. Microb. Ecol. 13:85–93.

    Google Scholar 

  • Koh, E. G. L. 1997. Do scleractinian corals engage in chemical warfare against microbes? J. Chem. Ecol. 23:379–398.

    Google Scholar 

  • Kubanek, J., Whalen, K. E., Engel, S., Kelly, S. R., Henkel, T. P., Fenical, W., and Pawlik, J. R. 2002. Multiple defensive roles of triterpene glycosides from two Caribbean sponges. Oecologia 131:125–136.

    Google Scholar 

  • Lawrence, J. R., Korber, D. R., Wolfaardt, G. M., and Caldwell, D. E. 1995. Behavioral strategies of surface-colonizing bacteria. Adv. Microb. Ecol. 14:1–75.

    Google Scholar 

  • Litter, M. M. and Litter, D. S. 1995. Impact of CLOD pathogen on Pacific coral reefs. Science 267:1356–1360.

    Google Scholar 

  • Little, B. J., Wagner, P., Maki, J. S., Walch, M., and Mitchell, R. 1986. Factors influencing the adhesion of microorganisms to surfaces. J. Adhes. 20:187–210.

    Google Scholar 

  • Martin, Y., Bonnefont, J. L., and Chancerelle, L. 2002. Gorgonians mass mortality during the 1999 late summer in French Mediterranean coastal waters: the bacterial hypothesis. Water Res. 36:779–782.

    Google Scholar 

  • Maximilien, R., De Nys, R., Holmstrom, C., Gram, L., Givskov, M., Crass, K., Kjelleberg, S., and Steinberg, P. D. 1998. Chemical mediation of bacterial surface colonization by secondary metabolites from the red alga Delisea pulchra. Aquat. Microb. Ecol. 15: 233–246.

    Google Scholar 

  • McClintock, J. B. and Baker, B. J. 2001. Marine Chemical Ecology. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Miller, J. D. and Jones, E. B. G. 1983. Observations on the association of thraustochytrid marine fungi with decaying seaweeds. Bot. Mar. 26:345–351.

    Google Scholar 

  • Moss, S. T. 1986. Biology and phylogeny of the Labyrinthulales and Thraustochytriales, pp. 105–129, in S. T. Moss (ed.). The Biology of Marine Fungi. Cambridge University Press, New York.

    Google Scholar 

  • Newbold, R. W., Jensen, P. R., Fenical, W., and Pawlik, J. R. 1999. Antimicrobial activity of Caribbean sponge extracts. Aquat. Microb. Ecol. 19:279–284.

    Google Scholar 

  • Paul, V. J. 1992. Ecological Roles of Marine Natural Products. Comstock Press, Ithaca, New York.

    Google Scholar 

  • Pawlik, J. R. 1992. Chemical ecology of the settlement of benthic marine invertebrates. Oceanogr. Mar. Biol. Annu. Rev. 30:273–335. MARINE MICROBIAL DEFENSE 1985

    Google Scholar 

  • Raghukumar, C., Nagarkar, S., and Raghukumar, S. 1992. Association of thraustochytrids and fungi with living marine algae. Mycol. Res. 7:542–546.

    Google Scholar 

  • Reicheldt, J. L. and Borowitzka, M. A. 1984. Antimicrobial activity from marine algae: results of a large scale screening programme. Hydrobiologia 116:158–168.

    Google Scholar 

  • Reinheimer, G. 1992. Aquatic Microbiology, 4th ed. Wiley, New York.

    Google Scholar 

  • Rinehart, K. L., Shaw, P. D., Shield, L. S., Gloer, J. B., and Harbour, G. C. 1981. Marine natural products as sources of antiviral, antimicrobial, and antineoplastic agents. Pure Appl. Chem. 53:795–817.

    Google Scholar 

  • Rosenthal, G. A. and M. R. Berenbaum. 1992. Herbivores: Their Interactions with Secondary Plant Metabolites, 2nd ed., Volume II. Evolutionary and Ecological Processes. Academic Press, San Diego, California.

    Google Scholar 

  • Schmidt, T. M., Hay, M. E., and Lindquist, N. 1995. Constraints on chemically mediated coevolution: multiple functions for seaweed secondary metaboiltes. Ecology 76: 107–123.

    Google Scholar 

  • Shea, C. and Williamson, J. C. 1990. Rapid analysis of bacterial adhesion in a microplate assay. Biotechniques 8:610–611.

    Google Scholar 

  • Sieburth, J. M. 1968. The influence of algal antibiosis on the ecology of marine microorganisms, pp. 63–94, in M. R. Droop and J. Wood (eds.). Advances in Microbiology of the Sea. Academic Press, London.

    Google Scholar 

  • Sieburth, J. M. 1975. Microbial Seascapes. Baltimore, University Park Press, 248 pp, Baltimore, Maryland.

    Google Scholar 

  • Sieburth, J.M. 1979. Sea Microbes. NewYork, Oxford University Press, 491 pp, Baltimore, Maryland.

    Google Scholar 

  • Sieburth, J. M. and Conover, J. T. 1965. Sargassum tannin, an antibiotic which retards fouling. Nature 208:52–53.

    Google Scholar 

  • Slattery, M., McClintock, J. B., and Heine, J. N. 1995. Chemical defenses in Antarctic soft corals: Evidence for antifouling compounds. J. Exp. Mar. Biol. Ecol. 190: 61–77.

    Google Scholar 

  • Smith, G.W., Ives, L. D., Nagelkerken, I. A., and Ritchie, K.B. 1996. Caribbean sea fan mortalities. Science 383:487.

    Google Scholar 

  • Sparks, A. K. 1985a. Bacterial diseases, pp. 181–204, in A. K. Sparks (ed.). Synopsis of Invertebrate Pathology. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Sparks, A. K. 1985b. Fungal diseases, pp. 205–237, in A. K. Sparks (ed.). Synopsis of Invertebrate Pathology. Elsevier Science Publishers, Amsterdam.

    Google Scholar 

  • Steinberg, P. D., Schneider, R., and Kjelleberg, S. 1997. Chemical defense of seaweeds against microbial colonization. Biodegradation 8:211–220.

    Google Scholar 

  • Steinberg, P. D., de Nys, R., and Kjelleberg, S. 2001. Chemical mediation of surface colonization, pp. 355–387, in J. B. McClintock and B. J. Baker (eds.). Marine Chemical Ecology. CRC Press, Boca Raton, Florida.

    Google Scholar 

  • Wahl, M. 1989. Marine epibiosis. I. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser. 58:175–189.

    Google Scholar 

  • Wahl, M. 1995. Bacterial epibiosis on Bahamian and Pacific ascidians. J. Exp. Mar. Biol. Ecol. 191:239–255.

    Google Scholar 

  • Wahl, M., Jensen, P. R., and Fenical, W. 1994. Chemical control of bacterial epibiosis on ascidians. Mar. Ecol. Prog. Ser. 110:45–57.

    Google Scholar 

  • Wardell, J. N., Brown, C. M., and Flannagan, B. 1983. Microbes and surfaces, pp. 350–378, in C. J. H. Slater, R. Whittenbury, and J. W. T. Wimpenny (eds.). Microbes in Their Natural Environment. Cambridge University Press, London.

    Google Scholar 

  • Zobell, C. E. and Allen, E. C. 1935. The significance of marine surfaces in the fouling of submerged surfaces. J. Bacteriol. 29:239–251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William Fenical.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engel, S., Jensen, P.R. & Fenical, W. Chemical Ecology of Marine Microbial Defense. J Chem Ecol 28, 1971–1985 (2002). https://doi.org/10.1023/A:1020793726898

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020793726898

Navigation