Skip to main content
Log in

Mechanical Properties and Microstructure of Diamond–SiC Nanocomposites

  • Published:
Inorganic Materials Aims and scope

Abstract

A bulk composite material close in hardness to diamond was fabricated from nanocrystalline diamond and SiC. The mechanical properties and microstructure of the composite were studied. Young's modulus of the composite is found to be notably lower than the one following from the additivity rule, which is attributable to the influence of structural defects present in the interfacial zone between SiC and diamond. SiC consists of nanometer-scale grains near the interface and submicron grains in the “pores.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Brazhkin, V.V., Lyapin, A.G., and Hemley, R.J., Harder than Diamond: Dreams and Reality, Philos. Mag. A., 2002, vol. 82, no. 2, pp. 231–253.

    Google Scholar 

  2. Bergmann, O.R. and Bailey, N.F., Explosive Shock Synthesis of Diamond (High Pressure Explosive Processing of Ceramics), Trans. Tech., 1987, pp. 67–85.

  3. Kondo, K., Sawai, S., Akaishi, M., and Yamaoka, S., Deformation Behaviour of Shock-Synthesized Diamond Powder under High Pressure and High Temperature, J. Mater. Sci. Lett., 1993, vol. 12, pp. 1383–1385.

    Google Scholar 

  4. Kondo, K.-I. and Sawai, S., Fabrication of Nanocrystalline Diamond Ceramics by a Shock Compaction Method, J. Am. Ceram. Soc., 1983, vol. 73, pp. 1983–1991.

    Google Scholar 

  5. Akaishi, M., Yamaoka, S., Tanaka, J., et al., Synthesis of Sintered Diamond with High Electrical Resistivity and Hardness, J. Am. Ceram. Soc., 1987, vol. 70, no. 10, pp. 237–239.

    Google Scholar 

  6. Wentorf, R.N., De Vries, R.C., and Bundy, F.P., Sintered Superhard Materials, Science (Washington, D. C., 1883?), 1980, vol. 208, pp. 873–880.

    Google Scholar 

  7. Brazhkin, V.V., Lyapin, A.G., V oloshin, R.N., et al., A Mechanism Underlying the Formation of Diamond Nanocomposites via High-Pressure Transformation of the C60 Fullerene, Pis'ma Zh. Eksp. Teor. Fiz., 1999, vol. 669, no. 11, pp. 822–827.

    Google Scholar 

  8. Ekimov, E.A., Gavriliuk, A.G., Palosz, B., et al., High-Pressure, High-Temperature Synthesis of SiC–Diamond Nanocrystalline Ceramics, Appl. Phys. Lett., 2000, vol. 77, no. 7, pp. 954–956.

    Google Scholar 

  9. Bundy, F.P. and Kasper, J.S., Hexagonal Diamond—a New Form of Carbon, J. Chem. Phys., 1967, vol. 48, no. 9, pp. 3437–3446.

    Google Scholar 

  10. Novikov, N.V., Fizicheskie svoistva almaza: Spravochnik (Physical Properties of Diamond: A Handbook), Kiev: Naukova Dumka, 1987.

    Google Scholar 

  11. Gigle, P.D., The Strength of Polycrystalline Diamond Compacts, Proc. 6th AIRAPT Int. Conf. on High-Pressure Science and Technology (Boulder, 1977), New York: Plenum, 1979, vol. 1, pp. 914–922.

    Google Scholar 

  12. Scafe, E., Giunta, G., Fabbri, L., et al., Mechanical Behaviour of Silicon–Silicon Carbide Composites, J. Eur. Ceram. Soc., 1996, vol. 16, pp. 703–713.

    Google Scholar 

  13. Lee, M., De Vries, R.C., Szala, L.E., and Taft, R.I., US Patent 4151686, 1979.

  14. Gordeev, S.K., Z hukov, S.G., D anchukova, L.V., and Ekstrom, T.C., Low-Pressure Fabrication of Diamond– SiC–Si Composites, Neorg. Mater., 2001, vol. 37, no. 6, pp. 691–696 [Inorg. Mater. (Engl. Transl.), vol. 37, no. 6, pp. 579–583].

    Google Scholar 

  15. Berdikov, V.F., P ushkarev, O.I., Artem'eva, Yu.I., and Adler, G.A., Microindenation Studies of Diamond-Based Superhard Composites, Sverkhtverd. Mater., 1983, vol. 5, pp. 21–23.

    Google Scholar 

  16. Klyachko, L.I., Veprintsev, V.I., and Kolchin, A.V., SV Polycrystalline Diamond: A New Synthetic Material for Drilling, Dressing, and Other Diamond Tools, Almazy Sverkhtverd. Mater., 1975, vol. 1, pp. 14–17.

    Google Scholar 

  17. Veprintsev, V.I., Kolchin, A.V., and Kirilin, N.M., Industrial Applications of SV Synthetic Polycrystalline Diamond, Almazy Sverkhtverd. Mater., 1982, vol. 10, pp. 2-4.

    Google Scholar 

  18. Werner, M., K lose, S., Szucs, F., et al., High Temperature Young's Modulus of Polycrystalline Diamond, Diamond Relat. Mater., 1997, vol. 6, pp. 344–347.

    Google Scholar 

  19. Semchinova, O.K., Graul, J., Neff, H., et al., Synthesis and Properties of Single Phase Diamond Ceramics, Diamond Relat. Mater., 1999, vol. 8, pp. 2140–2147.

    Google Scholar 

  20. Spriggs, R.M., Expression for Effect of Porosity on Elastic Modulus of Polycrystalline Refractory Materials, Particularly Aluminum Oxide, J. Am. Ceram. Soc., 1961, vol. 44, no. 12, pp. 628–629.

    Google Scholar 

  21. Kachanov, L.M., Solids with Cracks and Non-Spherical Pores: Proper Parameters of Defect Density and Effective Elastic Properties, Int. J. Fract., 1999, vol. 97, pp. 1–32.

    Google Scholar 

  22. Bruck, H.A. and Rabin, B.H., Evaluating Microstructural and Damage Effects in Rule-of-Mixture Predictions of the Mechanical Properties of Ni–Al2O3 Composites, J. Mater. Sci., 1999, vol. 34, pp. 2241–2251.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ekimov, E.A., Gierlotka, S., Gromnitskaya, E.L. et al. Mechanical Properties and Microstructure of Diamond–SiC Nanocomposites. Inorganic Materials 38, 1117–1122 (2002). https://doi.org/10.1023/A:1020910415053

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020910415053

Keywords

Navigation