Skip to main content
Log in

Preparation, Structure, and Properties of Magnetic Materials Based on Co-Containing Nanoparticles

  • Published:
Inorganic Materials Aims and scope

Abstract

The recent experimental data on the preparation and properties of materials containing Co-based magnetic nanoparticles are summarized. Particular attention is focused on the synthesis of cobalt nanoparticles in “rigid” matrices (polymers, metals, and solid surfaces) and their static magnetic properties, which are of great importance for practical applications. The conclusion is made that surface effects play an important role in determining the magnetic properties of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Synthesis, Functionalization, and Surface Treatment of Nanoparticles, Baraton, M.I., Ed., Los-Angeles: Am. Sci., 2002.

    Google Scholar 

  2. Coey, J.M.D., Magnetism in Future, J. Magn. Magn. Mater., 2001, vol. 226, pp. 2107–2112.

    Google Scholar 

  3. Bozorth, R.M., Ferromagnetism, New York: Van Nostrand, 1951. Translated under the title Ferromagnetizm, Moscow: Inostrannaya Literatura, 1956.

    Google Scholar 

  4. Tikazumi, S., Fizika ferromagnetizma. Magnitnye svoistva veshchestva (Physics of Ferromagnetism: Magnetic Properties of Matter), Moscow: Mir, 1983 (translated from Japanese).

    Google Scholar 

  5. Jamet, M., Wernsdorfer, W., Thirion, C., et al., Magnetic Anisotropy of a Single Cobalt Nanocluster, Phys. Rev. Lett., 2001, vol. 86, pp. 4676–4679.

    Google Scholar 

  6. Chen, J.P., Sorensen, C.M., Klabunde, K.J., and Hadjipanayis, G.C., Enhanced Magnetization of Nanoscale Colloidal Cobalt Particles, Phys. Rev. B: Condens. Matter, 1995, vol. 51, pp. 11527–11532.

    Google Scholar 

  7. Respaud, M., Broto, J.M., Rakoto, H., et al., Surface Effects on the Magnetic Properties of Ultrafine Cobalt Particles, Phys. Rev. B: Condens. Matter, 1998, vol. 57, pp. 2925–2935.

    Google Scholar 

  8. McHenry, M.E., Majetich, S.A., Artman, J.O., et al., Superparamagnetism in Carbon-Coated Co Particles Produced by the Kratschmer Carbon Arc Process, Phys. Rev. B: Condens. Matter, 1994, vol. 49, pp. 11358–11363.

    Google Scholar 

  9. Yamamuro, S., Sumiyama, K., Kamiyama, T., and Suzuki, K., Morphological and Magnetic Characteristics of Monodispersed Co-Cluster Assemblies, J. Appl. Phys., 1999, vol. 86, pp. 5726–5732.

    Google Scholar 

  10. Allia, P., Coisson, M., Tiberto, P., et al., Granular Cu–Co Alloys as Interacting Superparamagnets, Phys. Rev. B: Condens. Matter, 2001, vol. 64, pp. 144420-1–144420-12.

    Google Scholar 

  11. Kodama, R.H., Magnetic Nanoparticles, J. Magn. Magn. Mater., 1999, vol. 200, pp. 359–372.

    Google Scholar 

  12. Tikazumi, S., Fizika ferromagnetizma. Magnitnye kharakteristiki i prakticheskie premineniya (Physics of Ferromagnetism: Magnetic Characteristics and Applications), Moscow: Mir, 1987 (translated from Japanese).

    Google Scholar 

  13. Sato, H., Kitakami, O., Dakurai, T., and Shimada, Y., Structure and Magnetism of hcp-Co Fine Particles, J. Appl. Phys., 1997, vol. 81, pp. 1858–1862.

    Google Scholar 

  14. Nanomaterials: Synthesis, Properties, and Application, Edelstein, A.S. and Cfmmarata, R.C., Eds., Bristol: Inst. of Publishing, 1998.

    Google Scholar 

  15. Becker, J.A., Schafer, R., Festag, J.R., et al., Magnetic Properties of Cobalt-Cluster Dispersions Generated in an Electrochemical Cell, Surf. Rev. Lett., 1996, vol. 3, no. 1, pp. 1121–1126.

    Google Scholar 

  16. Jamet, M., Wernsdorfer, W., Thirion, C., et al., Magnetic Anisotropy of Single Cobalt Nanocluster, Phys. Rev. Lett., 2001, vol. 86, no. 20, pp. 4676–4679.

    Google Scholar 

  17. Yin, J.S. and Wang, Z.L., Preparation of Self-Assembled Cobalt Nanocrystal Arrays, Nanostruct. Mater., 1999, vol. 10, no. 7, pp. 845–852.

    Google Scholar 

  18. Petit, C. and Pileni, M.P., Physical Properties of Self-Assembled Nanosized Cobalt Particles, Appl. Surf. Sci., 2000, vol. 162/163, pp. 519–528.

    Google Scholar 

  19. Kitahara, H., Oku, T., Hirano, T., and Suganuma, K., Synthesis and Characterization of Cobalt Nanoparticles Encapsulated in Boron Nitride Nanocages, Diamond Relat. Mater., 2001, no. 10, pp. 1210–1213.

    Google Scholar 

  20. Saito, Y., Ma, J., Nakashima, J., and Masuda, M., Synthesis, Crystal Structures, and Magnetic Properties of Co Particles Encapsulated in Carbon Nanocapsules, Z. Phys. D: At., Mol. Clusters, 1997, vol. 40, pp. 170–172.

    Google Scholar 

  21. Zhang, Z., Zhang, Y.D., Yines, W.A., et al., Size and Location of Cobalt Clusters in Zeolite NaY: A Nuclear Magnetic Resonance Study, J. Am. Chem. Soc., 1992, vol. 114, pp. 4843–4846.

    Google Scholar 

  22. Yayakawa, Y., Kohiki, S., Sato, M., et al., Magnetism of Diluted Co3O4 Nanocrystals, Physica E (Amsterdam), 2001, vol. 9, pp. 250–252.

    Google Scholar 

  23. Chuanyun, X., Jinlong, Y., Kaiming, D., and Delin, W., Magnetic Properties of Cobalt Clusters Embedded in a Copper Matrix, Phys. Rev. B: Condens. Matter, 1997, vol. 55, no. 6, pp. 3677–3682.

    Google Scholar 

  24. Dupuis, V., Tuaillon, J., Prevel, B., et al., From the Superparamagnetic to the Magnetically Ordered State in Systems of Transition Metal Clusters Embedded in Matrices, J. Magn. Magn. Mater., 1997, vol. 165, pp. 42–45.

    Google Scholar 

  25. Jamet, M., Negrier, M., Dupuis, V., et al., Interface Magnetic Anisotropy in Cobalt Clusters Embedded in a Platinum Matrix, J. Magn. Magn. Mater., 2001, vol. 237, pp. 293–301.

    Google Scholar 

  26. Bodker, F., Morup, S., Charles, S.W., and Linderoth, S., Surface Oxidation of Cobalt Nanoparticles Studied by Mossbauer Spectroscopy, J. Magn. Magn. Mater., 1999, vols. 196/197, pp. 18–19.

    Google Scholar 

  27. Ji, T., Shi, H., Zhao, J., and Zhao, Y., Synthesis of Co– B/Resin Nanoparticles and Heat Treatment Effect on Their Magnetic Properties, J. Magn. Magn. Mater., 2000, vol. 212, pp. 189–194.

    Google Scholar 

  28. Respaud, M., Broto, J.M., Rakoto, H., et al., Surface Effects on the Magnetic Properties of Ultrafine Cobalt Particles, Phys. Rev. B: Condens. Matter, 1998, vol. 57, no. 5, pp. 2925–2935.

    Google Scholar 

  29. Ramos, J., Millan, A., and Palacio, F., Production of Magnetic Nanoparticles in a Polyvinylpyridine Matrix, Polymer, 2000, vol. 41, pp. 8461–8464.

    Google Scholar 

  30. Leslie-Pelecky, D.L., Zhang, X.Q., and Rieke, R.D., Self-Stabilized Magnetic Colloids: Ultrafine Co Particles in Polymers, J. Appl. Phys., 1996, vol. 79, pp. 5312-5314.

    Google Scholar 

  31. Sako, S., Ohshima, K., Sakai, M., and Bandow, S., Magnetic Property of CoO Ultrafine Particle, Surf. Rev. Lett., 1996, vol. 3, pp. 109–113.

    Google Scholar 

  32. Kazakova, O., Hanson, M., Blomquist, P., and Wappilng, R., Arrays of Epitaxial Co Submicron Particles: Critical Size for Single-Domain Formation and Multidomain Structures, J. Appl. Phys., 2001, vol. 90, no. 5, pp. 2440–2446.

    Google Scholar 

  33. Legrand, J., Petit, C., Bazin, D., and Pileni, M.P., Collective Effect on Magnetic Properties of 2D Superlattices of Nanosized Cobalt Particles, Appl. Surf. Sci., 2000, vol. 164, pp. 186–192.

    Google Scholar 

  34. Choi, C.J., Dong, X.L., and Kim, B.K., Characterization of Fe and Co Nanoparticles Synthesized by Chemical Vapor Condensation, Scr. Mater., 2001, vol. 44, pp. 2225–2229.

    Google Scholar 

  35. Vavassori, P., Angeli, E., Bisero, D., et al., Role of Particle Size Distribution on the Temperature Dependence of Coercive Field in Sputtered Co/Cu Granular Films, Appl. Phys. Lett., 2001, vol. 79, no. 14, pp. 2225–2228.

    Google Scholar 

  36. Dormann, J.L., Fiorani, D., and Tronc, E., Magnetic Relaxation in Fine-Particle Systems, Adv. Chem. Phys., 1997, vol. 98, pp. 283–494.

    Google Scholar 

  37. Batlle, X. and Labarta, A., Finite-Size Effects in Fine Particles: Magnetic and Transport Properties, J. Phys. D: Appl. Phys., 2002, vol. 35, pp. 15–42.

    Google Scholar 

  38. Leslie-Pelecky, D.L. and Rieke, R.D., Magnetic Properties of Nanostructured Materials, Chem. Mater., 1996, vol. 8, pp. 1770–1783.

    Google Scholar 

  39. Jacobs, I.S. and Bean, C.P., Fine Particles, Thin Films, and Exchange Anisotropy (Effects of Finite Dimensions and Interfaces on the Basic Properties of Ferromagnets), Magnetism, Rado, G.T. and Suhl, H., Eds., New York: Academic, 1963, vol. 3, pp. 271–350.

    Google Scholar 

  40. Ji, T., Shi, H., Zhao, J., and Zhao, Y., Synthesis of Co-B/Resin Nanoparticles and Heat Treatment Effect on Their Magnetic Properties, J. Magn. Magn. Mater., 2000, vol. 212, pp. 189–194.

    Google Scholar 

  41. Mørup, S., Bødker, F., Hendriksen, P.V., and Linderoth, S., Spin-Glass-like Ordering of the Magnetic Moments of Interacting Nanosized Maghemite Particles, Phys. Rev. B: Condens. Matter, 1995, vol. 52, pp. 287–294.

    Google Scholar 

  42. Petrov, Yu.I., Klastery i malye chastitsy (Clusters and Small Clusters), Moscow: Nauka, 1986.

    Google Scholar 

  43. Wohlfarth, E.P., The Temperature Dependence of the Magnetic Susceptibility of Spin-Glasses, Phys. Lett. A, 1979, vol. 70, pp. 489–491.

    Google Scholar 

  44. Sappey, R., Vincent, E., Hadacek, N., et al., Nonmonotonic Field Dependence of the Zero-Field Cooled Magnetization Peak in Some Systems of Magnetic Nanoparticles, Phys. Rev. B: Condens. Matter, 1997, vol. 56, pp. 14551–14559.

    Google Scholar 

  45. Bødker, F., Mørup, S., and Linderoth, S., Surface Effects in Metallic Iron Nanoparticles, Phys. Rev. Lett., 1994, vol. 72, pp. 282–285.

    Google Scholar 

  46. O'Grady, K. and Bradbury, A., Particle Size Analysis in Ferrofluids, J. Magn. Magn. Mater., 1983, vol. 39, pp. 91–94.

    Google Scholar 

  47. Blanco-Mantecón, M. and O'Grady, K., Grain Size and Blocking Distributions in Fine Particle Iron Oxide Nanoparticles, J. Magn. Magn. Mater., 1999, vol. 203, pp. 50-53.

    Google Scholar 

  48. Hansen, M.F. and Mørup, S., Estimation of Blocking Temperatures from ZFC/FC Curves, J. Magn. Magn. Mater., 1999, vol. 203, pp. 214–216.

    Google Scholar 

  49. Chantrell, R.W., Walmsley, N.S., Gore, J., and Maylin, M., Theoretical Studies of the Field-Cooled and Zero-Field Cooled Magnetization of Interacting Fine Particles, J. Appl. Phys., 1999, vol. 85, pp. 4340–4342.

    Google Scholar 

  50. Peng, D.L., Sumiyama, K., Hihara, T., et al., Magnetic Properties of Monodispersed Co/CoO Clusters, Phys. Rev. B: Condens. Matter, 2000, vol. 61, pp. 3103–3109.

    Google Scholar 

  51. Garcia-Otero, J., Garcia-Bastida, A.J., and Rivas, J., Influence of Temperature of the Coercive Field of Non-Interacting Fine Magnetic Particles, J. Magn. Magn. Mater., 1998, vol. 189, pp. 377–383.

    Google Scholar 

  52. Ferrari, E.F., Nunes, W.C., and Novak, M.A., Coercivity Extrema in Melt-Spun Cu–Co Ribbons: Effects of the Magnetic Moment Distribution, J. Appl. Phys., 1999, vol. 86, pp. 3010–3014.

    Google Scholar 

  53. Saito, Y., Ma, J., Nakashima, J., and Masuda, M., Synthesis, Crystal Structure, and Magnetic Properties of Co Particles Encapsulated in Carbon Nanocapsules, Z. Phys. D: At., Mol. Clusters, 1997, vol. 40, pp. 170–172.

    Google Scholar 

  54. Bonard, J.-M., Seraphin, S., Wegrowe, J.-E., et al., Varying the Size and Magnetic Properties of Carbon-Encapsulated Cobalt Particles, Chem. Phys. Lett., 2001, vol. 343, pp. 251–257.

    Google Scholar 

  55. Sato, H., Kitakami, O., Sakurai, T., et al., Structure and Magnetism of hcp-Co Fine Particles, J. Appl. Phys., 1997, vol. 81, pp. 1858–1862.

    Google Scholar 

  56. Wernsdorfer, W., Mailly, D., and Benoit, A., Single Nanoparticles Measurement Techniques, J. Appl. Phys., 2000, vol. 87, pp. 5094–5096.

    Google Scholar 

  57. Gubin, S.P., What Is a Nanoparticle? Trends in the Development of Nanochemistry and Nanotechnology, Ross. Khim. Zh., 2000, vol. 44, pp. 23–31.

    Google Scholar 

  58. Hickey, B.J., Howson, M.A., Greig, D., and Wiser, N., Enhanced Magnetic Anisotropy Energy Density for Superparamagnetic Particles of Cobalt, Phys. Rev. B: Condens. Matter, 1996, vol. 53, pp. 32–33.

    Google Scholar 

  59. Berkowitz, A.E. and Takano, K., Exchange Anisotropy— a Review, J. Magn. Magn. Mater., 1999, vol. 200, pp. 552–570.

    Google Scholar 

  60. Gangopadhyay, S., Hadjipanayis, G.C., Sorensen, C.M., and Klabunde, K.J., Exchange Anisotropy in Oxide Passivated Co Fine Particles, J. Appl. Phys., 1993, vol. 73, pp. 6964–6966.

    Google Scholar 

  61. Kiwi, M., Exchange Bias Theory, J. Magn. Magn. Mater., 2001, vol. 234, pp. 584–595.

    Google Scholar 

  62. Hickey, B.J., Howson, M.A., Greig, D., and Wiser, N., Enhanced Magnetic Anisotropy Energy Density for Superparamagnetic Particles of Cobalt, Phys. Rev. B: Condens. Matter, 1996, vol. 53, pp. 32–33.

    Google Scholar 

  63. Respaud, M., Broto, J.M., Rakoto, H., et al., Magnetization Measurements of Fine Cobalt Particles, Physica B (Amsterdam), 1998, vol. 247, pp. 532–536.

    Google Scholar 

  64. Bucher, J.P., Douglass, D.C., and Bloomfield, L.A., Magnetic Properties of Free Cobalt Clusters, Phys. Rev. Lett., 1991, vol. 66, pp. 3052–3055.

    Google Scholar 

  65. Liu, F., Press, M.R., Khanna, S.N., and Jena, P., Magnetism and Local Order: Ab Initio Tight-Binding Theory, Phys. Rev. B: Condens. Matter, 1998, vol. 39, pp. 6914-6924.

    Google Scholar 

  66. Douglass, D.C., Cox, A.J., Bucher, J.P., and Bloom-field, L.A., Magnetic Properties of Free Cobalt and Gadolinium Clusters, Phys. Rev. B: Condens. Matter, 1993, vol. 47, pp. 12874–12889.

    Google Scholar 

  67. Hansen, M.F. and Mørup, S., Models for the Dynamics of Interacting Magnetic Nanoparticles, J. Magn. Magn. Mater., 1998, vol. 184, pp. 262–274.

    Google Scholar 

  68. Dormann, J.L., Spinu, L., Tronc, E., et al., Effect of Interparticle Interactions on the Dynamical Properties of γ-Fe2O3 Nanoparticles, J. Magn. Magn. Mater., 1998, vol. 183, pp. 255–260.

    Google Scholar 

  69. Dormann, J.L., Fiorani, D., and Tronc, E., On the Models for Interparticle Interactions in Nanoparticle Assemblies: Comparison with Experimental Results, J. Magn. Magn. Mater., 1999, vol. 202, pp. 251–267.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gubin, S.P., Koksharov, Y.A. Preparation, Structure, and Properties of Magnetic Materials Based on Co-Containing Nanoparticles. Inorganic Materials 38, 1085–1099 (2002). https://doi.org/10.1023/A:1020950129165

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020950129165

Keywords

Navigation