Skip to main content
Log in

Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials

  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Lignin represents a vastly under-utilized natural polymer co-generated during papermaking and biomass fractionation. Different types of lignin exist, and these differ with regard to isolation protocol and plant resource (i.e., wood type or agricultural harvesting residue). The incorporation of lignin into polymeric systems has been demonstrated, and this depends on solubility and reactivity characteristics. Several industrial utilization examples are presented for sulfur-free, water-insoluble lignins. These include materials for automotive brakes, wood panel products, biodispersants, polyurethane foams, and epoxy resins for printed circuit boards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. W. G. Glasser (1980) in J. P. Casey, (Ed), Pulp and Paper: Chemistry and Chemical Technlogy. 3rd ed., Vol. 1, John Wiley & Sons, pp. 39–111. New York.

    Google Scholar 

  2. W. G. Glasser and S. S. Kelley (1987) in Encyclopedia of Polymer Science and Engineering, Vol. 8, JohnWiley & Sons, pp. 795–852. New York.

    Google Scholar 

  3. H. L. Chum, S. K. Parker, D. A. Feinberg, J. D. Wright, P. A. Rice, S. A. Sinclair, and W. G. Glasser (1985) SERI/TR 231–488, 1–86.

    Google Scholar 

  4. J. D. Gargulak and S. E. Lebo (2000) ACS Symp. Ser. No. 742, 304–320.

    Google Scholar 

  5. W. G. Glasser (2001) in F. C. Beall (ed.) The Encyclopedia of Materials: Science and Technology, Elsevier Science Oxford, UK.

    Google Scholar 

  6. W. G. Glasser, C. A. Barnett, P. C. Muller, and K. V. Sarkanen (1983) J. Agri. Food Chem. 31, 921–930.

    Google Scholar 

  7. W. G. Glasser, C. A. Barnett, and Y. Sano (1983) Appl. Polymer Symp. 37, 441–460.

    Google Scholar 

  8. W. G. Glasser (2000) ACS Symp. Ser. No. 742, 216–238.

    Google Scholar 

  9. J. H. Lora (2002) in T. Hu, (Ed.), Chemical Modification, Propeties, and Usage of Lignin, Kluwer Academic/Plenum Publishers, New York.

    Google Scholar 

  10. J. S. Gratzl and C. L. Chen (1996) Proc. Third Int. Non-Wood Fiber Pulping and Papermaking Conf. International Academic Publishers, Beijing, Suppl. Vol., pp. 15–21.

    Google Scholar 

  11. R. S. Wright and W. G. Glasser (1998) Biomass Bioenergy 14, 219–235.

    Google Scholar 

  12. M. Ibrahim and W. G. Glasser (1999) Bioresource Technol. 70, 181–192.

    Google Scholar 

  13. W. G. Glasser and R. C. Strickland (1987) Biomass 13, 235–254.

    Google Scholar 

  14. W. G. Glasser, V. Davé, and C. E. Frazier (1993) J. Wood Chem. Technol. 13, 545–559.

    Google Scholar 

  15. W. G. Glasser and S. Sarkanen (Eds.) (1989) ACS Symp. Ser. No. 397, 546.

  16. W. G. Glasser (1989) ACS Symp. Ser. No. 385, 43–54.

    Google Scholar 

  17. W. G. Glasser and R. K. Jain (1993) Holzforschung 47, 225–233.

    Google Scholar 

  18. R. K. Jain and W. G. Glasser (1993) Holzforschung 47(3), 325–332.

    Google Scholar 

  19. O. H.-H. Hsu and W. G. Glasser (1975) Appl. Polymer Symp. 28, 297–307.

    Google Scholar 

  20. W. G. Glasser and O. H.-H. Hsu (1977) “Polyurethane intermediates and products and methods of producing same from lignin”. U.S. Patent 4,017,474; and Canadian Patent #1,097,617 (1981).

  21. W. G. Glasser, W. Nieh, S. S. Kelley, and W. de Oliveira (1990) “Method of producing prepolymers from hydroxyalkyl lignin derivatives”. U.S. Patent #4,918,167.

  22. W. G. Glasser, W. de Oliveira, S. S. Kelley, and L. S. Nieh (1992) “Method of producing prepolymers from hydroxyalkyl lignin derivatives”. U.S. Patent #5,102,992.

  23. W. G. Glasser, O. H.-H. Hsu, D. L. Reed, R. C. Forte, and L. C.-F. Wu (1981) ACS Symp. Ser. No. 172, 311–338.

    Google Scholar 

  24. W. G. Glasser, L. C.-F. Wu, and J.-F. Selin (1985) in E. J. Soltes, (Ed.), Wood and Agricultural Residues: Research on Use for Feed, Fuels, and Chemicals, Academic Press, New York, 149–166.

    Google Scholar 

  25. S. S. Kelley, W. G. Glasser, and T. C. Ward (1989) ACS Symp. Ser. No. 397, 402–413.

    Google Scholar 

  26. W. Glasser, C. Barnett, T. Rials, and S. Kelley (1983) 1983 Int. Symp. Wood Pulping Chem. 3, 89–94.

    Google Scholar 

  27. L. C.-F. Wu and W. G. Glasser (1984) J. Appl. Polymer Sci. 29, 1111–1123.

    Google Scholar 

  28. W. G. Glasser, C. A. Barnett, T. G. Rials, and V. P. Saraf (1984) J. Appl. Polymer Sci. 29, 1815–1830.

    Google Scholar 

  29. S. S. Kelley, W. G. Glasser, and T. C. Ward (1988) J. Wood Chem. Technol. 8, 341–359.

    Google Scholar 

  30. W. G. Glasser, S. S. Kelley, T. G. Rials, and S. L. Ciemniecky (1986) Proc. 1986 TAPPI Res. Dev. Conf. 157–161.

  31. W. G. Glasser (October 1989) in Modification of Lignin with Pro pylene Oxide, Progress Report on an Industry-University Cooperative Project, Blacksburg, VA.

  32. W. G. Glasser, R. A. Northey, and T. P. Schultz (Eds) (1999) ACS Symp. Ser. No. 742, 559.

  33. Nehez, N. J. “Lignin-based friction material,” (1997) Canadian Patent Application 2,242,554.

  34. J. H. Lora, A. W. Creamer, L. Wu, and J. Ash (1994) Proc. Adh. Bonded Wood Symp. Forest Prod. Soc. Madison, Wisconsin, pp. 384–394.

    Google Scholar 

  35. W. C. Senyo, A. W. Creamer, L. Wu, and J. H. Lora (1989) ACS Symp. Ser. No. 397, 546.

    Google Scholar 

  36. P. C. Muller and W. G. Glasser (1984) J. Adh. 17, 157–173.

    Google Scholar 

  37. P. C. Muller, S. S. Kelley, and W. G. Glasser (1984) J. Adh. 17, 185–206.

    Google Scholar 

  38. W. G. Glasser, V. P. Saraf, and W. H. Newman (1982) J. Adh. 14, 233–255.

    Google Scholar 

  39. W. H. Newman and W. G. Glasser (1985) Holzforschung 39, 345–353.

    Google Scholar 

  40. C. Phanopoulos and J. J. Vanden Ecker (1996) “Process for binding lignocellulosic material,” WO 96/32444.

  41. W. G. Glasser and R. H. Leitheiser (1984) Polymer Bull. 12, 1–5.

    Google Scholar 

  42. C. A. Barnett and W. G. Glasser (1989) ACS Symp. Ser. No. 397, 435–451.

    Google Scholar 

  43. W. L.-S. Nieh and W. G. Glasser (1989) ACS Symp. Ser. No. 397, 506–514.

    Google Scholar 

  44. K. Hofmann and W. G. Glasser (1993) J. Wood Chem. Technol. 13, 73–95.

    Google Scholar 

  45. K. Hofmann and W. G. Glasser (1993) J. Adh. 40, 229–241.

    Google Scholar 

  46. K. Hofmann and W. G. Glasser (1994) Macromol. Chem. Phys. 195, 65–80.

    Google Scholar 

  47. W. G. Glasser and R. K. Jain (November 1996) “The green card: Development of a lignin-based epoxy resin for use in printed circuit boards (PCB),” Final project report to IBM.

  48. J. M. Shaw, S. L. Buchwalter, J. C. Hedrick, S. K. Kang, L. L. Kosbar, J. D. Gelorme, D. A. Lewis, S. Purushothaman, R. Saraf, and A. Viehbeck (1996) Printed Circuit Fabrication 19, 38–44.

    Google Scholar 

  49. L. L. Kosbar, J. D. Gelorme, R. M. Japp, and W. T. Fotorny (2001) J. Indust. Ecol. 4, 93–105.

    Google Scholar 

  50. J. Oberkofler (2001) “Sulphur-free lignin and derivatives thereof for reducing the formation of slime and deposits in industrial plants,” WO 01/68530 A2.

  51. Lignopol Polymere Stoffe GmbH, Muehlacker, Germany.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang G. Glasser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lora, J.H., Glasser, W.G. Recent Industrial Applications of Lignin: A Sustainable Alternative to Nonrenewable Materials. Journal of Polymers and the Environment 10, 39–48 (2002). https://doi.org/10.1023/A:1021070006895

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021070006895

Navigation