Skip to main content
Log in

HPLC-based bioseparations using molecularly imprinted polymers

  • Published:
Bioseparation

Abstract

HPLC-based separations of amino acids and peptides, nucleotide bases, drugs, sugars and steroids using molecularly imprinted polymers (MIPs) have been reviewed in this article. The molecular recognition mechanisms of the template molecules on the MIPs in organic and aqueous eluents were discussed. Furthermore, new polymerization methods suitable for preparations of HPLC columns and packing materials using molecular imprinting techniques, and their applications to HPLC-based separations are also dealt with.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allender CJ, Heard CM & Brain KR (1997) Mobile phase effects on enantiomer resolution using molecularly imprinted polymers. Chirality 9: 238-242.

    Google Scholar 

  • Andersson LI (1996) Application of molecular imprinting to the development of aqueous buffer and organic solvent based radioligand binding assay for (S)-propranolol. Anal. Chem. 68: 111-117.

    Google Scholar 

  • Andersson LI (2000) Molecular imprinting: developments and applications in the analytical chemistry field. J. Chromatogr. B 745: 3-13.

    Google Scholar 

  • Andersson LI & Mosbach K (1990) Enantiomeric resolution on molecularly imprinted polymers prepared with only non-covalent and non-ionic interactions. J. Chromatogr. 516: 313-322.

    PubMed  Google Scholar 

  • Andersson LI, O'Shannessy DJ & Mosbach K (1990) Molecular recognition in synthetic polymers: preparation of chiral stationary phases by molecular imprinting of amino acid amides. J. Chromatogr. 513: 167-179.

    Google Scholar 

  • Ansell RJ, Ramström O & Mosbach K (1996) Towards artificial antibodies prepared by molecular imprinting. Clin. Chem. 42: 1506-1512.

    PubMed  Google Scholar 

  • Asanuma H, Kakazu M, Shibata M, Hishiya T & Komiyama M (1997) Molecularly imprinted polymer for β-cyclodextrin for the efficient recognition of cholesterol. Chem. Commun. 1971-1972.

  • Baggiani C, Trotta F, Giraudi G, Moraglio G & Vanni A (1997) Chromatographic characterization of a molecularly imprinted polymer binding theophylline in aqueous buffers. J. Chromatogr. A 786: 23-29.

    Google Scholar 

  • Baggiani C, Giraudi G, Trotta F, Giovannoli C & Vanni A (2000) Chromatographic characterization of a molecular imprinted polymer binding cortisol. Talanta 51: 71-75.

    Google Scholar 

  • Bartsch RA & Maeda M (eds.) (1998) Molecular and ionic recognition with imprinted polymers, ACS Symp. Ser. 703.

  • Brüggermann O, Haupt K, Ye L, Yilmaz E & Mosbach K (2000) New configurations and applications of molecularly imprinted polymers. J. Chromatogr. A 889: 15-24.

    PubMed  Google Scholar 

  • Chen W, Liu F, Li K-A, Yang Y-H & Tong S-Y (2000) A hydrochlorothiazide-imprinted polymer. Anal. Lett. 33: 809-818.

    Google Scholar 

  • Cheong SH, McNiven S, Rachkov A, Levi R, Yano K & Karube I. (1997) Testosteron receptor binding mimic constructed using molecular imprinting. Macromolecules 30: 1317-1322.

    Google Scholar 

  • Fischer L, Müller R, Ekberg B & Mosbach K (1991) Direct enantioseparation of β-adrenergic blockers using a chiral stationary phase prepared by molecular imprinting. J. Am. Soc. Chem. 113: 9358-9360.

    Google Scholar 

  • Haginaka J & Kagawa C (2002) Uniformly sized molecularly imprinted polymer for d-chlorpheniramine: evaluation of retention and molecular recognition properties in aqueous mobile phase. J. Chromatogr. A 948: 77-84.

    PubMed  Google Scholar 

  • Haginaka J & Sakai Y (2000) Uniform-sized molecularly imprinted polymer material for (S)-propranolol. J. Pharm. Biomed. Anal. 22: 899-907.

    PubMed  Google Scholar 

  • Haginaka J & Sanbe H (1998) Uniform-sized molecularly imprinted polymers for β-estradiol. Chem. Lett. 1089-1090.

  • Haginaka J & Sanbe H (2001) Uniformly sized molecularly imprinted polymer for (S)-naproxen. Retention and molecular recognition properties in aqueous mobile phase. J. Chromatogr. A 913: 141-146.

    Google Scholar 

  • Haginaka J, Takehira H, Hosoya K & Tanaka N (1998) Molecularly imprinted uniform-sized polymer-based stationary phase for naproxen. Comparison of molecular recognition ability of the molecularly imprinted polymers prepared by thermal and redox polymerization techniques. J. Chromatogr. A 816: 113-121.

    Google Scholar 

  • Haginaka J, Sanbe H & Takehira H (1999) Uniform-sized molecularly imprinted polymer for (S)-ibuprofen. Retention properties in aqueous mobile phases. J. Chromatogr. A 857: 117-125.

    PubMed  Google Scholar 

  • Hart BR, Rush DJ & Shea KJ (2000) Discrimination between enantiomers of structurally related molecules: separation of benzodiazepines by molecularly imprinted polymers. J. Am. Soc. Chem. 122: 460-465.

    Google Scholar 

  • Haupt K & Mosbach K (1998) Plastic antibodies: developments and applications. Trends Biotechnol. 16: 468-475.

    PubMed  Google Scholar 

  • Hosoya K, Yoshizako K, Tanaka N, Kimata K, Araki T & Haginaka J (1994) Uniform-size macroporous polymer-based stationary phase for HPLC prepared through molecular imprinting technique. Chem. Lett.: 1437-1438.

  • Katz A & Davis ME (1999) Investigations into the mechanisms of molecular recognition with imprinted polymers. Macromolecules 32: 4113-4121.

    Google Scholar 

  • KempeM(1996) Antibody-mimicking polymers as chiral stationary phases in HPLC. Anal. Chem. 68: 1948-1953.

    Google Scholar 

  • Kempe M & Mosbach K (1994) Direct resolution of naproxen on a non-covalently molecularly imprinted chiral stationary phase. J. Chromatogr. A 664: 276-279.

    Google Scholar 

  • Kempe M & Mosbach K (1995a) Molecular imprinting used for chiral separations. J. Chromatogr. A 694: 3-13

    Google Scholar 

  • Kempe M & Mosbach K (1995b) Receptor binding mimetics: a novel molecularly imprinted polymer. Tetrahedron Lett. 36: 3563-3566.

    Google Scholar 

  • Kempe M, Fischer L & Mosbach K (1993) Chiral separation using molecularly imprinted heteroaromatic polymers. J. Mol. Recogn. 6: 25-29.

    Google Scholar 

  • Knutsson M, Andersson HS & Nicholls IA (1998) Novel chiral recognition elements for molecularly imprinted polymer preparation. J. Mol. Recogn. 11: 87-90.

    Google Scholar 

  • Kugimiya A, Matsui J, Takeuchi T, Yano K, Muguruma H, Elgersma AV & Karube I (1995) Recognition of sialic acid using molecularly imprinted polymer. Anal. Lett. 28: 2317-2323.

    Google Scholar 

  • Kugimiya A, Takeuchi T, Matsui J, Ikebukuro K, Yano K & Karube I (1996) Recognition in novel molecularly imprinted polymer sialic acid receptors in aqueous media. Anal. Lett. 29: 1099-1107.

    Google Scholar 

  • Kugimiya A, Matsui J & Takeuchi T (1997) Sialic acid-imprinted polymers using noncovalent interactions. Mater. Sci. Eng. C 4: 263-266.

    Google Scholar 

  • Kugimiya A, Matsui J, Abe H, Aburatani M & Takeuchi T (1998) Synthesis of castasterone selective polymers prepared by molecular imprinting. Anal. Chim. Acta 365: 75-79.

    Google Scholar 

  • Liu X-C & Dordick JS (1999) Sugar acrylate-based polymers as chiral molecularly imprintable hydrogels. J. Poly. Sci. Part A Polym. Chem. 37: 1665-1671.

    Google Scholar 

  • Martin P, Wilson ID, Morgan DE, Jones GR & Jones K (1997) Evaluation of a molecular-imprinted polymer for use in the solid phase extraction of propranolol from biological fluids. Anal. Commun. 34: 45-47.

    Google Scholar 

  • Matsui J & Takeuchi T (1997) A molecularly imprinted polymer rod as nicotine selective affinity media prepared with 2-(trifluoromethyl)acrylic acid. Anal. Commun. 34: 199-200.

    Google Scholar 

  • Matsui J, Kato T, Takeuchi T, Suzuki M, Yokoyama K, Tamiya E & Karube I (1993) Molecular recognition in continuous polymer rods prepared by a molecular imprinting technique. Anal. Chem. 65: 2223-2225.

    Google Scholar 

  • Matsui J, Miyoshi Y, Matsui R & Takeuchi T (1995) Rod-type affinity media for liquid chromatography prepared by in-situmolecular imprinting. Anal. Sci. 11: 1017-1019.

    Google Scholar 

  • Matsui J, Nicholls IA & Takeuchi T (1996a) Highly stereoselective molecularly imprinted polymer synthetic receptors for cinchona alkaloids. Tetrahedron: Asymmetry 7: 1357-1361.

    Google Scholar 

  • Matsui J, Kaneko A, Miyoshi Y, Yokoyama K, Tamiya E & Takeuchi T (1996b) A molecularly imprinted nicotine-selective polymer. Anal. Lett. 29: 2071-2078.

    Google Scholar 

  • Matsui J, Doblhoff-Dier O & Takeuchi T (1997) 2-(Trifluoromethyl)acrylic acid: a novel functional monomer in non-covalent molecular imprinting. Anal. Chim. Acta 343: 1-4.

    Google Scholar 

  • Matsui J, Tachibana Y & Takeuchi T (1998a) Molecularly imprinted receptor having metalloporphyrin-based signaling binding site. Anal. Commun. 35: 225-227.

    Google Scholar 

  • Matsui J, Nicholls IA & Takeuchi T (1998b) Molecular recognition in cinchona alkaloid molecular imprinted polymer rods. Anal. Chim. Acta 365: 89-93.

    Google Scholar 

  • Matsui J, Higashi M & Takeuchi T (2000) Molecularly imprinted polymer as 9-ethyladenine receptor having a porphyrin-based recognition center. J. Am. Soc. Chem. 122: 5218-5219.

    Google Scholar 

  • Mayes AG & Mosbach K (1996) Molecularly imprinted polymer beads: suspension polymerization using a liquid perfluorocarbon as the dispersing phase. Anal. Chem. 68: 3769-3774.

    Google Scholar 

  • Mayes AG & Mosbach K (1997) Molecularly imprinted polymers: useful materials for analytical chemistry? Trends Anal. Chem. 16: 321-332.

    Google Scholar 

  • Mayes AG, Andersson LI & Mosbach K (1994) Sugar binding polymers showing high anomeric and epimeric discrimination obtained by noncovalent molecular imprinting. Anal. Biochem. 222: 483-488.

    PubMed  Google Scholar 

  • Meng Z, Wang J, Zhou L, Wang Q & Zhu D (1999) High performance cocktail functional monomer for making molecule imprinting polymer. Anal. Sci. 15: 141-144.

    Google Scholar 

  • Nicholls IA, Ramström O & Mosbach K (1995) Insights into the role of the hydrogen bond and hydrophobic effect on recognition in molecularly imprinted polymer synthetic peptide receptor mimics. J. Chromatogr. A691: 349-353.

    Google Scholar 

  • Nilsson KGI, Sakaguchi K, Gemeiner P & Mosbach K (1995) Molecular imprinting of acetylated carbohydrate derivatives into methacrylic polymers. J. Chromatogr. A 707:199-203.

    Google Scholar 

  • O'Brien TP, Snow NH, Grinberg N & Crocker L (1999) Mechanistic aspects of chiral discrimination on a molecular imprinted polymer phase. J. Liq. Chromatogr. Rel. Technol. 22: 183-204.

    Google Scholar 

  • Piletsky SA, Andersson HS & Nicholls IA (1998) The rational use of hydrophobic effect-based recognition in molecularly imprinted polymers. J. Mol. Recogn. 11: 94-97.

    Google Scholar 

  • Piletsky SA, Andersson HS & Nicholls IA (1999) Combined hydrophobic and electrostatic interaction-based recognition in molecularly imprinted polymers. Macromolecules 32: 633-636.

    Google Scholar 

  • Rachkov A & Minoura N (2000) Recognition of oxytocin and oxytocin-related peptides in aqueous media using a molecularly imprinted polymer synthesized by the epitope approach. J. Chromatogr. A 889: 111-118.

    PubMed  Google Scholar 

  • Rachkov AE, Cheong SH, El'skaya AV, Yano K & Karube I (1998a) Molecularly imprinted polymers as artificial steroid receptors. Polym. Adv. Technol. 9: 511-519.

    Google Scholar 

  • Rachkov A, McNiven S, Cheong SH, El'skaya AV, Yano K & Karube I (1998b) Molecular imprinted polymers selective for β-estradiol. Supramol. Chem. 9: 317-322.

    Google Scholar 

  • Ramström O & Ansell RJ (1998) Molecular imprinting technology: challenges and prospects for the future. Chirality 10: 195-209.

    Google Scholar 

  • Ramström O, Nicholls IA & Mosbach K (1993) Recognition sites incorporating both pyridinyl and carboxy functionalities prepared by molecular imprinting. J. Org. Chem. 58: 7562-7564.

    Google Scholar 

  • Ramström O, Andersson LI & Mosbach K (1994) Synthetic peptide receptor mimics: highly stereoselective recognition in noncovalent molecularly imprinted polymers. Tetrahedron: Asymmetry 5: 649-656.

    Google Scholar 

  • Ramström O, Yu C & Mosbach K (1996a) Chiral recognition in adrenergic receptor binding mimics prepared by molecular imprinting. J. Mol. Recogn. 9: 691-696.

    Google Scholar 

  • Ramström O, Ye L & Mosbach K (1996b) Artificial antibodies to corticosteroids prepared by molecular imprinting. Chem. Biol. 3: 471-477.

    PubMed  Google Scholar 

  • Ramström O, Ye L & Gustavsson P-E (1998a) Chiral recognition by molecularly imprinted polymers in aqueous media. Chromatographia 48: 197-202.

    Google Scholar 

  • Ramström O, Ye L, Krook M & Mosbach K (1998b) Screening of a combinatorial steroid library using molecularly imprinted polymers. Anal. Commun. 35: 9-11.

    Google Scholar 

  • Remcho VT & Tan ZJ (1999) MIPs as chromatographic stationary phases for molecular recognition. Anal. Chem. 71: 248A-255A.

    Google Scholar 

  • Sellergren B (1994) Imprinted dispersion polymers: a new class of easily accessible affinity stationary phases. J. Chromatogr. A 673: 133-141.

    Google Scholar 

  • Sellergren B (1997) Noncovalent molecular imprinting: antibodylike molecular recognition in polymeric network materials. Trends Anal. Chem. 16: 310-320.

    Google Scholar 

  • Sellergren B (2000) Imprinted polymers with memory for small molecules, proteins, or crystals. Angew. Chem. Int. Ed. 39: 1031-1037.

    Google Scholar 

  • Sellergren B & Shea KJ (1993) Chiral ion-exchange chromatography. Correlation between solute retention and a theoretical ion-exchange model using imprinted polymers. J. Chromatogr. A 654: 17-28.

    PubMed  Google Scholar 

  • Shea KJ, Spivak DA & Sellergren B (1993) Polymer complements to nucleotide bases. Selective binding of adenine derivatives to imprinted polymers. J. Am. Soc. Chem. 115: 3368-3369.

    Google Scholar 

  • Siemann M, Andersson LI & Mosbach K (1997) Separation and detection of macrolide antibiotics by HPLC using macrolide351 imprinted synthetic polymers as stationary phases. J. Antibiot. 50: 89-91.

    PubMed  Google Scholar 

  • Skudar K, Brüggemann O, Wittelsberger A & Ramström O (1999) Selective recognition and separation of β-lactam antibiotics using molecularly imprinted polymers. Anal. Commun. 36: 327-331.

    Google Scholar 

  • Spivak DA & Shea KJ (1998) Binding of nucleotide bases by imprinted polymers. Macromolecules 31: 2160-2165.

    Google Scholar 

  • Spivak DA, Gilmore MA & Shea KJ (1997) Evaluation of binding and origins of specificity of 9-ethyladenine imprinted polymers. J. Am. Soc. Chem. 119: 4388-4393.

    Google Scholar 

  • Sreenivasan K (1998) Effect of the type of monomers of molecularly imprinted polymers on the interaction with steroids. J. Appl. Polym. Sci. 68: 1863-1866.

    Google Scholar 

  • Takeuchi T & Haginaka J (1999) Separation and sensing based on molecular recognition using molecularly imprinted polymers. J. Chromatogr. B 728: 1-20.

    Google Scholar 

  • Takeuchi T & Matsui J (2000) Miniturized molecularly imprinted continuous polymer rods. J. High Resol. Chromatogr. 23: 44-46.

    Google Scholar 

  • Tanabe K, Takeuchi T, Matsui J, Ikebukuro K, Yano K & Karube I (1995) Recognition of barbiturates in molecularly imprinted copolymers using mutiple hydrogen bonding. J. Chem. Soc., Chem. Commun. 2303-2304.

  • Vallano PT & Remcho VT (2000) Affinity screening by packed capillary high-performance liquid chromatography using molecularly imprinted sorbents I: demonstration of feasibility. J. Chromatogr. A 888: 23-34.

    PubMed  Google Scholar 

  • Vidyasankar S, Ru M & Arnold FH (1997) Molecularly imprinted ligand-exchange adsorbents for the chiral separation of underivatized amino acids. J. Chromatogr. A775: 51-63.

    Google Scholar 

  • Whitcombe MJ, Rodriguez ME, Villar P, Vulfson EN (1995) A new method for the introduction of recognition site functionality into polymers prepared by molecular imprinting: synthesis and characterization of polymeric receptors for cholesterol. J. Am. Chem. Soc. 117: 7105-7111.

    Google Scholar 

  • Wulff G (1995) Molecular imprinting in cross-linked materials with the aid of molecular templates-a way towards artificial antibodies. Angew. Chem. Int. Ed. Engl. 34: 1812-1832.

    Google Scholar 

  • Yano K, Nakagiri T, Takeuchi T, Matsui J, Ikebukuro K & Karube I (1997) Stereoselective recognition of dipeptide derivatives in molecularly imprinted polymers which incorporate an L-valine derivative as a novel functional monomer. Anal. Chim. Acta357: 91-98.

    Google Scholar 

  • Yano K, Tanabe K, Takeuchi K, Matsui J, Ikebukuro K & Karube I (1998) Molecularly imprinted polymers which mimic multiple hydrogen bonds between nucleotide bases. Anal. Chim. Acta 363: 111-117.

    Google Scholar 

  • Yoshizako K, Hosoya K, Iwakoshi Y, Kimata K & Tanaka N (1998) Porogen imprinting effects. Anal. Chem. 70: 386-389.

    Google Scholar 

  • Yu C & Mosbach K (1997) Molecular imprinting utilizing an amide functional group for hydrogen bonding leading to highly efficient polymers. J. Org. Chem. 62: 4057-4064.

    Google Scholar 

  • Yu C & Mosbach K (2000) Influence of mobile phase composition and cross-linking density on the enantiomeric recognition properties of molecularly imprinted polymers. J. Chromatogr., A 888: 63-72.

    Google Scholar 

  • Yu C, Ramström O & Mosbach K (1997) Enantiomeric recognition by molecularly imprinted polymers using hydrophobic interactions. Anal. Lett. 30: 2123-2140.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haginaka, J. HPLC-based bioseparations using molecularly imprinted polymers. Bioseparation 10, 337–351 (2001). https://doi.org/10.1023/A:1021550005389

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021550005389

Navigation