Skip to main content
Log in

Error Estimates for Barycentric Finite Volumes Combined with Nonconforming Finite Elements Applied to Nonlinear Convection-Diffusion Problems

  • Published:
Applications of Mathematics Aims and scope Submit manuscript

Abstract

The subject of the paper is the derivation of error estimates for the combined finite volume-finite element method used for the numerical solution of nonstationary nonlinear convection-diffusion problems. Here we analyze the combination of barycentric finite volumes associated with sides of triangulation with the piecewise linear nonconforming Crouzeix-Raviart finite elements. Under some assumptions on the regularity of the exact solution, the L 2(L 2) and L 2(H 1) error estimates are established. At the end of the paper, some computational results are presented demonstrating the application of the method to the solution of viscous gas flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Adam, A. Felgenhauer, H.-G. Roos and M. Stynes: A nonconforming finite element method for a singularly perturbed boundary value problem. Computing 54 (1995), 1–25.

    Google Scholar 

  2. Ph. Angot, V. Dolejší, M. Feistauer and J. Felcman: Analysis of a combined barycentric finite volume-nonconforming finite element method for nonlinear convection-diffusion problems. Appl. Math. 43 (1998), 263–310.

    Google Scholar 

  3. P. Arminjon, A. Madrane: A mixed finite volume/finite element method for 2-dimensional compressible Navier-Stokes equations on unstructured grids. In: Hyperbolic Problems: Theory, Numerics, Applications (M. Fey, R. Jeltsch, eds.). Birkhäuser, Basel, 1999.

    Google Scholar 

  4. P.G. Ciarlet: The Finite Elements Method for Elliptic Problems. Studies in Mathematics and its Applications, Vol. 4. North-Holland, Amsterdam, 1978.

    Google Scholar 

  5. M. Crouzeix, P.-A. Raviart: Conforming and nonconforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 7 (1973), 33–75.

    Google Scholar 

  6. V. Dolejší: Sur des méthodes combinant des volumes finis et des éléments finis pour le calcul d'écoulements compressibles sur des maillages non structurés. PhD Dissertation, Charles University Prague-L'Université Méditerranée Marseille, 1998.

    Google Scholar 

  7. V. Dolejší: Anisotropic mesh adaptation for finite volume and finite element methods on triangular meshes. Comput. Vis. Sci. 1 (1998), 165–178.

    Google Scholar 

  8. V. Dolejší, P. Angot: Finite volume methods on unstructured meshes for compressible flows. In: Finite Volumes for Complex Applications (Problems and Perspectives), (F. Benkhaldoun, R. Vilsmeier, eds.). Hermes, Rouen, 1996, pp. 667–674.

    Google Scholar 

  9. R. Eymand, T. Gallouë t and R. Herbin: Finite Volume Methods. Technical Report 97–19, Centre de Mathématiques et d'Informatique. Université de Provence, Marseille, 1997.

    Google Scholar 

  10. V. Dolejší, M. Feistauer and J. Felcman: On the discrete Friedrichs inequality for nonconforming finite elements. Numer. Funct. Anal. Optim. 20 (1999), 437–447.

    Google Scholar 

  11. M. Feistauer: Mathematical Methods in Fluid Dynamics. Pitman Monographs and Surveys in Pure and Applied Mathematics 67. Longman Scientific & Technical, Harlow, 1993.

    Google Scholar 

  12. M. Feistauer, V. Dolejší, J. Felcman and A. Kliková: Adaptive mesh refinement for problems of fluid dynamics. In: Proc. of Colloquium Fluid Dynamics '99 (P. Jonáš, V. Uruba, eds.). Institute of Thermomechanics, Academy of Sciences, Prague, 1999, pp. 53–60.

    Google Scholar 

  13. M. Feistauer, J. Felcman: Convection-diffusion problems and compressible Navier-Stokes equations. In: The Mathematics of Finite Elements and Applications J.R. Whiteman, ed.). John Wiley & Sons, 1997, pp. 175–194.

  14. M. Feistauer, J. Felcman and V. Dolejší: Numerical simulation of compresssible viscous flow through cascades of profiles. Z. Angew. Math. Mech. 76 (1996), 297–300.

    Google Scholar 

  15. M. Feistauer, J. Felcman and M. Lukáčová: Combined finite elements-finite volume solution of compressible flow. J. Comput. Appl. Math. 63 (1995), 179–199.

    Google Scholar 

  16. M. Feistauer, J. Felcman and M. Lukáčová: On the convergence of a combined finite volume-finite element method for nonlinear convection-diffusion problems. Numer. Methods Partial Differential Equations 13 (1997), 163–190.

    Google Scholar 

  17. M. Feistauer, J. Felcman, M. Lukáčová and G. Warnecke: Error estimates of a combined finite volume-finite element method for nonlinear convection-diffusion problems. SIAM J. Numer. Anal. 36 (1999), 1528–1548.

    Google Scholar 

  18. M. Feistauer, J. Slavík and P. Stupka: On the convergence of the combined finite volume-finite element method for nonlinear convection-diffusion problems. II. Explicit schemes. Numer. Methods Partial Differential Equations 15 (1999), 215–235.

    Google Scholar 

  19. J. Felcman: Finite volume solution of the inviscid compressible fluid flow. Z. Angew. Math. Mech. 72 (1992), 513–516.

    Google Scholar 

  20. J. Felcman, V. Dolejší: Adaptive methods for the solution of the Euler equations in elements of the blade machines. Z. Angew. Math. Mech. 76 (1996), 301–304.

    Google Scholar 

  21. J. Felcman, V. Dolejší and M. Feistauer: Adaptive finite volume method for the numerical solution of the compressible Euler equations. In: Computational Fluid Dynamics '94 (J. Périaux, S. Wagner, E.H. Hirschel and R. Piva, eds.). John Wiley & Sons, Stuttgart, 1994, pp. 894–901.

    Google Scholar 

  22. J. Felcman, G. Warnecke: Adaptive computational methods for gas flow. In: Proceedings of the Prague Mathematical Conference (K. Segeth, ed.). ICARIS, Prague, 1996, pp. 99–104.

    Google Scholar 

  23. J. Fořt, M. Huněk, K. Kozel and M. Vavřincová: Numerical simulation of steady and unsteady flows through plane cascades. In: Numerical Modeling in Continuum Mechanics II (R. Ranacher, M. Feistauer and K. Kozel, eds.). Faculty of Mathematics and Physics, Charles Univ., Prague, 1995, pp. 95–102.

    Google Scholar 

  24. H. Gajewski, K. Gröger and K. Zacharias: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen. Akademie-Verlag, Berlin, 1974.

    Google Scholar 

  25. T. Ikeda: Maximum principle in finite element models for convection-diffusion phenomena. In: Mathematics Studies 76, Lecture Notes in Numerical and Applied Analysis Vol. 4. North-Holland, Amsterdam-New York-Oxford, 1983.

    Google Scholar 

  26. C. Johnson: Finite element methods for convection-diffusion problems. In: Computing Methods in Engineering and Applied Sciences V. (R. Glowinski, J. L. Lions, eds.). North-Holland, Amsterdam, 1981.

    Google Scholar 

  27. C. Johnson: Numerical Solution of Partial Differential Equations. Cambridge University Press, Cambridge, 1988.

    Google Scholar 

  28. A. Kliková: Finite Volume-Finite Element Solution of Compressible Flow. Doctoral Thesis. Charles University Prague, 2000.

  29. A. Kliková, M. Feistauer and J. Felcman: Adaptive methods for problems of fluid dynamics. In: Software and Algorithms of Numerical Mathematics '99 (J. Holenda, I. Marek, eds.). West-Bohemian University, Pilsen, 1999.

    Google Scholar 

  30. D. Kröner: Numerical Schemes for Conservation Laws. Wiley & Teuner, Chichester, 1997.

    Google Scholar 

  31. D. Kröner, M. Rokyta: Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions. SIAM J. Numer. Anal. 31 (1994), 324–343.

    Google Scholar 

  32. M. Křížek, Qun Lin: On diagonal dominance of stiffness matrices in 3D. East-West J. Numer. Math. 3 (1993), 59–69.

    Google Scholar 

  33. M. Křížek, P. Neittaanmäki: Finite Element Approximation of Variational Problems and Applications. Pitman Monographs and Surveys in Pure and Applied Mathematics</del></del>, Vol. 50. Longman Scientific & Technical, Harlow, 1990.

    Google Scholar 

  34. A. Kufner, O. John and S. Fučík: Function Spaces. Academia, Prague, 1977.

    Google Scholar 

  35. J. M. Melenk and C. Schwab: The hp streamline diffusion finite element method for convection dominated problems in one space dimension. East-West J. Numer. Math. 7 (1999), 31–60.

    Google Scholar 

  36. K. W. Morton: Numerical Solution of Convection-Diffusion Problems. Chapman & Hall, London, 1996.

    Google Scholar 

  37. K. Ohmori, T. Ushijima: A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations. RAIRO Anal. Numér. 18 (1984), 309–322.

    Google Scholar 

  38. S. Osher, F. Solomon: Upwind difference schemes for hyperbolic systems of conservation laws. Math. Comp. 38 (1982), 339–374.

    Google Scholar 

  39. H.-G. Roos, M. Stynes and L. Tobiska: Numerical Methods for Singularly Perturbed Differential Equations. Springer Series in Computational Mathematics, Vol. 24. Springer-Verlag, Berlin, 1996.

    Google Scholar 

  40. F. Schieweck, L. Tobiska: A nonconforming finite element method of upstream type applied to the stationary Navier-Stokes equation. RAIRO Modél. Math. Anal. Numér. 23 (1989), 627–647.

    Google Scholar 

  41. C. Schwab: p-and hp-Finite Element Methods. Theory and Applications in Solid and Fluid Mechanics. Clarendon Press, Oxford, 1998.

    Google Scholar 

  42. S. P. Spekreijse: Multigrid Solution of the Steady Euler Equations. Centrum voor Wiskunde en Informatica, Amsterdam, 1987.

    Google Scholar 

  43. G. Strang: Variational crimes in the finite element method. In: The Mathematical Foundations of the Finite Element Method (A. K. Aziz, ed.). Academic Press, New York, 1972, pp. 689–710.

    Google Scholar 

  44. M. Štastný , P. Šafaří Experimental analysis data on the transonic flow past a plane turbine cascade. ASME Paper 90-GT-313. New York, 1990.

  45. R. Temam: Navier-Stokes Equations. North-Holland, Amsterdam-New York-Oxford, 1979.

    Google Scholar 

  46. L. Tobiska: Full and weighted upwind finite element methods. In: Splines in Numerical Analysis Mathematical Research Volume, Vol. 32 (J.W. Schmidt, H. Spath, eds.). Akademie-Verlag, Berlin, 1989.

    Google Scholar 

  47. G. Vijayasundaram: Transonic flow simulation using an upstream centered scheme of Godunov in finite elements. J. Comp. Phys. 63 (1986), 416–433.

    Google Scholar 

  48. G. Zhou: A local L 2-error analysis of the streamline diffusion method for nonstationary convection-diffusion systems. RAIRO Modél. Math. Anal. Numér. 29 (1995), 577–603.

    Google Scholar 

  49. G. Zhou, R. Rannacher: Pointwise superconvergence of streamline diffusion finite-element method. Numer. Methods Partial Differential Equations 12 (1996), 123–145.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolejsi, V., Feistauer, M., Felcman, J. et al. Error Estimates for Barycentric Finite Volumes Combined with Nonconforming Finite Elements Applied to Nonlinear Convection-Diffusion Problems. Applications of Mathematics 47, 301–340 (2002). https://doi.org/10.1023/A:1021701705932

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021701705932

Navigation