Skip to main content
Log in

Quantification of Natural Fracture Surfaces Using Fractal Geometry

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

The purpose of this paper is to present an extensive evaluation of the methods to calculate the fractal dimension of natural fracture surfaces. Three methods; variogram analysis (VA), power spectral density (PSD), and roughness-length method (RMS) are applied to 2-D surface data (PSD) and 1-D profiles (VA and RMS) extracted from the surface data of 54 mm diameter crystallized limestone samples. Surface topography of the samples is quantified through a newly designed fully automated device. Before the application, self-affinity of the surface roughness and the applicability of these methods are validated using synthetically generated fractal surfaces. Fractal dimension values of the profiles are obtained as between 1 and 1.5 with a few exceptions. VA and RMS methods yield consistent fractal dimensions while the PSD values are lower than those of the other two methods. In terms of practical applicability, the VA is found more convenient than other two methods because there still exists shortcomings with the PSD and RMS methods due to difficulties in the mathematical analysis of the plots whose slopes are used in the computation of fractal dimension. However, it is observed that the data of limited size fracture surfaces are convenient for fractal analysis and the results are promising for further applications if the fracture surface size is restricted like cores recovered from deep boreholes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aviles, C. A., Scholz, C. H., and Boatwright, J., 1987, Fractal analysis applied to characteristic segments of the San Andreas fault: Jour. Geophys. Res., v. 92, p. 331–344.

    Google Scholar 

  • Barton, N., 1973, Review of a new shear strength criterion for rock joints: Engineering Geol., v. 7, p. 287–332.

    Google Scholar 

  • Berry, M. V., and Lewis, Z. V., 1980, On the Weierstrass-Mandelbrot fractal function: Proc. Roy. Soc. London, Ser. A., v. 370, p. 459–484.

    Google Scholar 

  • Brigham, O. E., 1974, The fast fourier transform: Prentice-Hall, Inc., New Jersey, 133 p.

    Google Scholar 

  • Brown, S. R., 1987a, Fluid flow through rock joints: The effect of surface roughness: Jour. Geophys. Res., v. 92,no. B2, p. 1337–1347.

    Google Scholar 

  • Brown, S. R., 1987b, A note on the description of surface roughness using fractal dimension: Geophys. Res. Lett., v. 14,no. 11, p. 1095–1098

    Google Scholar 

  • Brown, S. R., and Scholz, C. H., 1985, Broad bandwidth study of the topography of natural rock surfaces. Jour. Geophys. Res., v. 90,no. B14, p. 12575–12582.

    Google Scholar 

  • Carr, J. R., 1989, Fractal characterization of joint surfaces roughness in welded tuff of Yucca Mountain, Nevada: Proc. 30th U.S. Rock Mech. Symp., Morgantown, West Virginia, p. 193–200.

  • Carr, J. R., and Warriner, J. B., 1987, Rock mass classification using fractal dimension, in Farmer, I., et al., eds., Proc. 28th. U.S. Rock. Mech. Symp.: Balkema Boston, p. 73–80.

  • Carr, J. R., and Warriner, J. B., 1989, Relationship between the fractal dimension and joint roughness coefficient: Bull. Assoc. Eng. Geol. v. 26, p. 253–264.

    Google Scholar 

  • Clarke, K. C., 1986, Computation of the fractal dimension of topographic surfaces using the triangular prism surface area method: Computers & Geosciences, v. 12,no. 5, p. 713–722.

    Google Scholar 

  • Den Outer, A., Kaashoek, J. F., and Hack, H. R. G. K., 1995, Difficulties with using continuous fractal theory for discontinuity surfaces: Int. Jour. Rock Mech. Min. Sci. & Geomech. Abstr., v. 32,no. 1, p. 3–9.

    Google Scholar 

  • Develi, K., 1996, The quantitative definition of joint surface roughness of Kurtun Dam site rocks in Harsit Valley, Turkey: unpubl. MS thesis, Istanbul Technical University, Istanbul, Turkey, 150 p.

  • Dubuc, B., Quiniou, J. F., Roques-Carmes, C., Tricot, C., and Zucker, S. W., 1989, Evaluating the fractal dimension of profiles: Phys. Rev. A, v. 39,no. 3, p. 1500–1512.

    Google Scholar 

  • Feder, J., 1988, Fractals: Plenum Press, New York, 283 p.

    Google Scholar 

  • Fournier, A., Fussel, D., and Carpenter, L., 1982, Computer rendering of stochastic models: Commun. ACM, v. 25, p. 371–384.

    Google Scholar 

  • Hsiung, S. M., Ghosh, A., and Chowdhury, A. H., 1995, On natural rock joint profile characterization using self-affine fractal approach, in Daemen and Schultz, eds., Rock mechanics: Balkema, Rotterdam, p. 681–687.

    Google Scholar 

  • Huang, S. L., Oelfke, S. M., and Speck, R. C., 1992, Applicability of fractal characterization and modeling to rock joint profiles: Int. Jour. Rock Mech. Min. Sci. and Geomech. Abstr., v. 29,no. 2, p. 89–98.

    Google Scholar 

  • ISRM (International Society for Rock Mechanics), 1978, Suggested methods for the quantitative description of discontinuities in rock masses: Int. Jour. Rock Mech. Min. Sci. and Geomech. Abstr., v. 15, p. 319–368.

    Google Scholar 

  • Kertesz, J., and Vicsek, T., 1994, Self-affine interfaces, in Bunde, A., and Havlin, S., eds., Fractals in science: Springer-Verlag, New York, p. 89–117.

    Google Scholar 

  • Klinkenberg, B., 1994, A review of methods used to determine the fractal dimension of linear features: Math. Geology, v. 36,no. 1, p. 23–46.

    Google Scholar 

  • Krohn, C. E., and Thompson, A. H., 1986, Fractal sandstone pores: Automated measurements using scanning electron microscope images: Phys. Rev. Lett., v. 33,no. 9, p. 6366–6374.

    Google Scholar 

  • Kulatilake, P. H. S. W., Shou, G., Huang, T. H., and Morgan, R. M., 1995, New peak shear strength criteria for anisotropic rock joints: Int. Jour. Rock Mech. Min. Sci. and Geomech. Abstr., v. 32,no. 7, p. 673–697.

    Google Scholar 

  • La Pointe, P. R., and Barton, C. C., 1995, Creating reservoir simulations, in Barton, C. C., and La Pointe, P. R., eds., Fractals in petroleum geology and earth processes: Plenum Press, New York, p. 267–268.

    Google Scholar 

  • Lee, Y. H., Carr, J. R., Barr, D. J., and Hass, C. J., 1990, The fractal dimension as a measure of the roughness of rock discontinuity profile: Int. Jour. Rock Mech. Min. Sci. and Geomech. Abstr., v. 27, p. 453–464.

    Google Scholar 

  • Malinverno, A., 1990, A simple method to estimate the fractal dimension of a self-affine series: Geophys. Res. Lett., v. 14,no. 11, p. 1953–1956.

    Google Scholar 

  • Mandelbrot, B. B., 1982, The fractal geometry of nature: Freeman, San Francisco, 468 p.

    Google Scholar 

  • Mandelbrot, B. B., Passoja, D. E., and Paullay, A. J., 1984, Fractal character of fracture surfaces of metals: Nature, v. 308, p. 721–722.

    Google Scholar 

  • Matsushita, M., and Ouchi, S., 1989, On the self-affinity of various curves: Physica D, v. 38, p. 246–251.

    Google Scholar 

  • Matsushita, M., Ouchi, S., and Honda, K., 1991, On the fractal structure of statistics of contour lines of a self-affine surface: Jour. of Phys. Soc. Jpn., v. 60, p. 2109–2112.

    Google Scholar 

  • Miller, S. M., McWilliams, P. C., and Kerkering, J. C., 1990, Ambiguities in estimating fractal dimensions of rock fracture surfaces, in Hustrulid, W. and Johnson, G. A., eds., Rock mechanics contributions and challenges: Balkema, Rotterdam, p. 471–478.

    Google Scholar 

  • Pande, C. S., Richards, L. R., and Smith, S., 1987, Fractal characteristics of fractured surfaces: Jour. Met. Sci. Lett., v. 6, p. 295–297.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical recipes in C: The art of scientific computing: Cambridge University Press, USA, p. 504.

    Google Scholar 

  • Rojanski, D., Huppert, D. Bale, H. D., Dacai, X., Schmidt, P. W., Farin, D., Seri-Levy, A., and Avnir, D., 1986, Integrated fractal analysis of silica: Adsorption, electronic energy transfer, and small-angle X-ray scattering: Phys. Rev. Lett., v. 56,no. 23, p. 2505–2508.

    Google Scholar 

  • Sakellariou, M., Nakos, B., and Mitsakaki, C., 1991, On the fractal character of rock surfaces: Int. Jour. Rock Mech. Min. Sci. Geomech. Abstr., v. 28,no. 6, p. 527–533.

    Google Scholar 

  • Saupe, D., 1988, Algorithms for random fractals, in Saupe, D., and Peitgen, H. O., eds., The science of fractal image: Springer-Verlag, New York, p. 71–113.

    Google Scholar 

  • Turk, N., Greig, M. J., Dearman, W. R., and Amin, F. F., 1987, Characterization of rock joint surfaces by fractal dimension, in Farmer, I., et al., eds., Proc. 28th U.S. Rock Mech. Symp.: Balkema, Boston, p. 1223–1236.

    Google Scholar 

  • Voss, R. F., 1985, Random fractal forgeries, in Earnshow, R. A., ed., Fundamental algorithms for computer graphics. NATO ASI Series: Springer-Verlag, Berlin, p. 805–835.

    Google Scholar 

  • Wang, J. S. Y., Narasimhan, T. N., and Scholz, C. H., 1988, Aperture correlation of a fractal fracture. Jour. Geophys. Res., v. 93,no. B3, p. 2216–2224.

    Google Scholar 

  • Wong, P., Howard, J., and Lin, J., 1986, Surface roughening and the fractal nature of rocks: Phys. Rev. Lett., v. 57,no. 5, p. 637–640.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Develi, K., Babadagli, T. Quantification of Natural Fracture Surfaces Using Fractal Geometry. Mathematical Geology 30, 971–998 (1998). https://doi.org/10.1023/A:1021781525574

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021781525574

Navigation