Skip to main content
Log in

Molecular Weight Changes and Polymeric Matrix Changes Correlated with the Formation of Degradation Products in Biodegraded Polyethylene

  • Published:
Journal of environmental polymer degradation Aims and scope Submit manuscript

Abstract

The molecular weight changes in abiotically and biotically degraded LDPE and LDPE modified with starch and/or prooxidant were compared with the formation of degradation products. The samples were thermooxidized for 6 days at 100°C to initiate degradation and then either inoculated with Arthobacter paraffineus or kept sterile. After 3.5 years homologous series of mono- and dicarboxylic acids and ketoacids were identified by GC-MS in abiotic samples, while complete disappearance of these acids was observed in biotic environments. The molecular weights of the biotically aged samples were slightly higher than the molecular weights of the corresponding abiotically aged samples, which is exemplified by the increase in \(\overline M _n\) from 5200 g/mol for a sterile sample with the highest amount of prooxidant to 6000 g/mol for the corresponding biodegraded sample. The higher molecular weight in the biotic environment is explained by the assimilation of carboxylic acids and low molecular weight polyethylene chains by microorganisms. Assimilation of the low molecular weight products is further confirmed by the absence of carboxylic acids in the biotic samples. Fewer carbonyls and more double bonds were seen by FTIR in the biodegraded samples, which is in agreement with the biodegradation mechanism of polyethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. OECD (1981) Guidelines for Testing of Chemicals, OECD, Paris.

    Google Scholar 

  2. A.-C. Albertsson (1978) J. Appl. Polym. Sci. 22, 3419.

    Google Scholar 

  3. A.-C. Albertsson, Z. G. Banhidi, and L.-L. Beyer-Ericsson (1978) J. Appl. Polym. Sci. 22, 3434.

    Google Scholar 

  4. A.-C. Albertsson and B. Rånby (1979) Appl. Polym. Symp. 35, 423.

    Google Scholar 

  5. A.-C. Albertsson (1980) Eur. Polym. J. 16, 623.

    Google Scholar 

  6. J. H. Cornell, A. M. Kaplan, and M. R. Rogers (1984) J. Polym. Sci. 29, 2581.

    Google Scholar 

  7. G. J. L. Griffin (1977) U.S. Patent 4,021,388.

  8. G. J. L. Griffin (1976) J. Polym. Sci. Symp. 57, 281.

    Google Scholar 

  9. V. T. Breslin (1993) J. Environ. Polym. Degrad. 1, 127.

    Google Scholar 

  10. J. S. Peansky, J. M. Long, and R. P. Wool (1991) J. Polym. Sci. Polym. Phys. 29, 565.

    Google Scholar 

  11. F. H. Otey, R. P. Westhoff, and W. M. Doane (1980) Ind. Eng. Chem. Prod. Res. Dev. 19, 592.

    Google Scholar 

  12. F. H. Otey and R. P. Westhoff (1982) U.S. Patent 4,337,181.

  13. E. Chiellini, F. Cioni, R. Solaro, G. Vallini, A. Corti, and A. Pera (1993) J. Environ. Polym. Degrad. 1, 167.

    Google Scholar 

  14. D. F. Gilmore, S. Antoun, R. W. Lentz, S. Goodwin, R. Austin, and R. C. Fuller (1992) J. Ind. Microbiol. 10, 199.

    Google Scholar 

  15. S. M. Goheen and R. P. Wool (1991) J. Appl. Polym. Sci. 42, 2691.

    Google Scholar 

  16. Y. Otake, T. Kobayashi, H. Asabe, N. Murakami, and K. Ono (1995) J. Appl. Polym. Sci. 56, 1789.

    Google Scholar 

  17. M. Weiland and C. David (1994) Polym. Degrad. Stab. 45, 371.

    Google Scholar 

  18. H. Greizerstein, J. A. Syracuse, and P. J. Kostyniak (1993) Polym. Degrad. Stab. 39, 251.

    Google Scholar 

  19. K. E. Johnson, A. L. Pometto III, and Z. L. Nikolov (1993) Appl. Environ. Microbiol. 59, 1155.

    Google Scholar 

  20. C. David, M. Trojn, A. Daro, and W. Demarteau (1992) Polym. Degrad. Stab. 37, 233.

    Google Scholar 

  21. A. L. Andrady, J. E. Pegram, and Y. Song (1993) J. Environ. Polym. Degrad. 1, 117.

    Google Scholar 

  22. A. Tidjani and R. Arnaud (1993) Polym. Degrad. Stab. 39, 285.

    Google Scholar 

  23. S. H. Hamid and M. B. Amin (1995) J. Appl. Polym. Sci. 55, 1385.

    Google Scholar 

  24. V. T. Breslin and R. L. Swanson (1993) J. Air Waste Manage. Assoc. 43, 325.

    Google Scholar 

  25. K. K. Leonas and R. W. Gorden (1993) J. Environ. Polym. Degrade. 1, 45.

    Google Scholar 

  26. A.-C. Albertsson and S. Karlsson (1991) Makromol. Chem. Macromol. Symp. 48/49, 395.

    Google Scholar 

  27. Z. Grubisic, P. Rempp, and H. Benoit (1967) J. Polym. Sci. Part B Polym. Lett. 5, 753.

    Google Scholar 

  28. M. Hakkarainen, A.-C. Albertsson, and S. Karlsson (1997) J. Appl. Phys. Sci. 66, 959.

    Google Scholar 

  29. M. Hakkarainen, A.-C. Albertsson, and S. Karlsson (1996) J. Chromatogr. A 741, 251.

    Google Scholar 

  30. S. Karlsson, M. Hakkarainen, and A.-C. Albertsson (1997) Macromolecules 30, 7721.

    Google Scholar 

  31. A.-C. Albertsson (1992) in Handbook of Polymer Degradation S. H. Hamid, A. G. Maadhad, and M. B. Amin (Eds.), Marcel Dekker, New York, p. 345.

    Google Scholar 

  32. P. Arnaud, P. Dabin, J. Lemaire, S. Al-Malaika, S. Chohan, M. Coker, G. Scott, A. Fauve, and A. Maaroufi (1994) Polym. Degrad. Stab. 46, 211.

    Google Scholar 

  33. A.-C. Albertsson, S. O. Andersson, and S. Karlsson (1987) Polym. Degrad. Stab. 18, 73.

    Google Scholar 

  34. H. G. Schlegel (1979) Allgemeine Mikrobiologie, 4 Augflage, Georg Thieme Verlag, Stuttgart, p. 356.

    Google Scholar 

  35. A.-C. Albertsson (1977) Thesis, Royal Institute of Technology, Stockholm, Sweden.

  36. A.-C. Albertsson (1989) in Advances in Stabilization and Degradation of Polymers, Vol. 1, A. Patsis (Ed.), Technomic, Lancaster, PA, p. 115.

    Google Scholar 

  37. A.-C. Albertsson and Z. G. Banhidi (1980) J. Appl. Polym. Sci., 25, 1655.

    Google Scholar 

  38. B. Erlandsson, A.-C. Albertsson, and S. Karlsson, (1998) Acta Polym. 49, 363.

    Google Scholar 

  39. M. Weiland, A. Daro, and C. David (1995) Polym. Degrad. Stab. 48, 275.

    Google Scholar 

  40. A. L. Pometto III, K. E. Johnson, and M. Kim (1993) J. Environ. Polym. Degrad. 1, 213.

    Google Scholar 

  41. B. Erlandsson, S. Karlsson, and A.-C. Albertsson (1997) Polym. Degrad. Stab. 55, 237.

    Google Scholar 

  42. A.-C. Albertsson, C. Barenstedt S. Karlsson, and T. Lindberg (1995) Polymer 36, 3075.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Albertsson, AC., Erlandsson, B., Hakkarainen, M. et al. Molecular Weight Changes and Polymeric Matrix Changes Correlated with the Formation of Degradation Products in Biodegraded Polyethylene. Journal of Polymers and the Environment 6, 187–195 (1998). https://doi.org/10.1023/A:1021873631162

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021873631162

Navigation