Skip to main content
Log in

Growth and Optical Properties of Quantized CdS Crystallites in TEOS Silica Xerogels

  • Published:
Journal of Materials Synthesis and Processing

Abstract

Quantized CdS crystallite-doped tetraethylorthosilicate (TEOS) silica xerogels are prepared by the sol-gel method. In this method, cadmium acetate [Cd(CH3COO)22H2O]-doped TEOS alcogel is formed by the hydrolysis and polycondensation of ethanolic TEOS in the presence of hydrochloric acid (HCl) and ammonium hydroxide (NH4OH) catalysts and Cd(CH3COO)2.2H2O. The CdS crystallites are formed in the alcogel by the reaction of Cd(CH3COO)2.2H2O present in the gel and methanolic sodium sulfide (Na2S), which is added over the alcogel. The effect of CdS/TEOS, EtOH/TEOS, S/Cd molar ratios, and temperature on the optical properties and CdS crystallite sizes in the xerogels are studied. A blue shift is observed in optical absorption spectra by decreasing the CdS/TEOS molar ratio from 2 × 10−2 to 1 × 10−4. It is observed that the crystallite size is increased from 1.6 to 3.4 nm by increasing the EtOH/TEOS molar ratio from 2 to 20, respectively, for a constant CdS/TEOS molar ratio of 5 × 10−4. Emission spectra of xerogels are measured and found that the emission peak maxima shifted toward lower energies (higher wavelengths) by increasing the CdS/TEOS molar ratio in the xerogels. It is known from the X-ray diffraction (XRD) measurements of CdS-doped xerogels that the CdS crystallite structure in the xerogels is hexagonal wurtzite. The crystallite sizes were calculated from the XRD patterns and tight bonding calculations. There is a significant change in the color and size of CdS crystallite in the xerogels with a variation in temperature from 200 to 400°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. Ermer, J. F. Valley, R. Lytel, G. F. Lipscomb, T. E. Van Eck, and D. G. Girton, Appl. Phys. Lett. 61, 2272 (1992).

    Google Scholar 

  2. D. M. Burland, R. D. Miller, and C. A. Walsh, Chem. Rev. 94, 31 (1994).

    Google Scholar 

  3. H. Weller, U. Koch, M. Gutierrez, and J. A. Henglein, J. Phys. Chem. 88, 649 (1984).

    Google Scholar 

  4. L. E. Brus, J. Chem. Phys. 80, 4403 (1984).

    Google Scholar 

  5. J. M. Nedeljkovic, M. T. Nenodovic, I. Micino, and A. Nozik, J. Phys. Chem. 90, 12 (1986).

    Google Scholar 

  6. J. P. Kuchnski, B. H. Milasavljevic, and J. K. Thomas, J. Phys. Chem. 88, 90 (1984).

    Google Scholar 

  7. W. J. Albery, G. T. Brown, R. D. Darwell, and E. Saievar-Ironized, J. Chem. Soc. Faraday Trans. I 81, 1999 (1985).

    Google Scholar 

  8. P. V. Kamat, N. M. Dimitrijevic, and R. W. Fessenden, J. Phys. Chem. 91, 396 (1987).

    Google Scholar 

  9. D. Hayer, I. Micico, M. T. Nenodovic, V. Swayambunathan, and D. Messel, J. Phys. Chem. 93, 4603 (1989).

    Google Scholar 

  10. E. F. Hilinski, P. A. Lucase, and Y. Wang, J. Chem. Phys. 89, 3435 (1988).

    Google Scholar 

  11. J. Pankove, Optical Processes in Semiconductors (Dover, New York, 1971), p. 413.

    Google Scholar 

  12. C. Brinker and G. Scherrer, Sol-Gel Science (Academic Press, Orlando, FL, 1990).

    Google Scholar 

  13. R. C. Roncone, L. A. Weller-Brophy, L. Weisenbach, and B. J. J. Zelinski, J. Non-Cryst. Solids 128, 111 (1991).

    Google Scholar 

  14. M. Gugleilmi, P. Colombo, L. Mancinelli Degli Esposti, G. C. Righini, S. Pelli, and V. Rigato, J. Non-Cryst. Solids 147, 641 (1992).

    Google Scholar 

  15. L. L. Hench and J. West, Chem. Rev. 90, 73 (1990).

    Google Scholar 

  16. J. H. Fendler, Chem. Rev. 87, 877 (1987).

    Google Scholar 

  17. R. K. Jain and R. C. Lind, J. Opt. Soc. Am. 73, 647 (1983).

    Google Scholar 

  18. Y. Wang, A. Suna, W. Mahler, and R. Kasowski, J. Chem. Phys. 87, 7387 (1987).

    Google Scholar 

  19. D. Hauser, T. M. O'Neil, K. Jahansion, D. Whilten, and G. Mc. Lendon, J. Phys. Chem. 90, 6074 (1986).

    Google Scholar 

  20. R. Rosetti, J. L. Ellison, J. M. Gibson, and L. E. Brus, J. Chem. Phys. 80, 4464 (1984).

    Google Scholar 

  21. G. M. Pajonk, A. Venkateswara Rao, N. N. Parvathy, and E. Elaloui, J. Mater. Sci. 31, 5683 (1996).

    Google Scholar 

  22. P. E. Lippens and M. Lannoo, Phys. Rev. B 39, 10935 (1989).

    Google Scholar 

  23. A. Venkateswara Rao, G. M. Pajonk, and N. N. Parvathy, Mater. Chem. Phys. 48, 234 (1996).

    Google Scholar 

  24. T. Kawayerchi, H. Hishikur, J. Iura, and Y. Kokuba, J. Non-Cryst. Solids, 63, 61 (1984).

    Google Scholar 

  25. M. L. Steigirwald and L. E. Brus, Acc. Chem. Rev. 23, 183 (1990).

    Google Scholar 

  26. Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991).

    Google Scholar 

  27. A. Henglein, Topics Curr. Chem. 143, 113 (1998).

    Google Scholar 

  28. Power diffraction file (ASTM, 1961).

  29. M. Nogami, K. Nagasaka, and M. Takata, J. Non-Cryst. Solids 122, 101 (1990).

    Google Scholar 

  30. A. Venkateswara Rao and N. N. Parvathy, J. Mater. Sci. 28, 3021 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parvathy, N.N., Pajonk, G.M. & Rao, A.V. Growth and Optical Properties of Quantized CdS Crystallites in TEOS Silica Xerogels. Journal of Materials Synthesis and Processing 7, 221–228 (1999). https://doi.org/10.1023/A:1021897409664

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021897409664

Navigation