Skip to main content
Log in

Thermal Plasma Technology: Where Do We Stand and Where Are We Going?

  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

In this overview, an attempt is made to assess the present and future research and development in thermal plasma processing of materials restricted to (1) thermal plasma coating technologies, (2) thermal plasma synthesis of fine powders, (3) thermal plasma waste destruction, and (4) thermal plasma spheroidization and densification. Since thermal plasma processing is, in general, governed by a large number of parameters, implementation of controls becomes mandatory. The lack of sufficient controls combined with economic drawbacks in some cases has been the main obstacle for the growth of thermal plasma technology. Present R&D efforts, however, address these problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. Spores and E. Pfender, “Flow structure of a turbulent thermal plasma jet,” Surf. Coat. Technol. 37, 251 (1989).

    Google Scholar 

  2. R. Spores, “Analysis of the flow structure of a turbulent thermal plasma jet,” Ph.D. Thesis, University of Minnesota-Minneapolis (1989).

  3. E. Pfender, J. Fincke, and R. Spores, “Entrainment of cold gas into thermal plasma jets,” Plasma Chem. Plasma Process. 11, 529 (1991).

    Google Scholar 

  4. R. W. Schefer, V. Hartmann, and R. W. Dibble, AIAA J. 25, 1318 (1987).

    Google Scholar 

  5. M. Brossa and E. Pfender, “Probe measurements in thermal plasma jets,” Plasma Chem. Plasma Process. 8, 75 (1988).

    Google Scholar 

  6. S. A. Wutzke, “Conditions governing the symptomatic behavior of an electric arc in a superimposed flow field,” Ph.D. Thesis, University of Minnesota-Minneapolis (1967).

  7. S. A. Wutzke, E. Pfender, and E. R. G. Eckert, “Study of electric-arc behavior with superimposed flow,” AIAA J. 5, 707 (1967).

    Google Scholar 

  8. M. P. Planche, Z. Duan, O. Lagnoux, J. Heberlein, P. Fauchais, and E. Pfender, “Study of arc fluctuations with different plasma spray torch configurations”, Proceedings of the 13th International Symposium on Plasma Chemistry, edited by C. K. Wu (Beijing, China), Vol. III, pp. 1460–1465 (1997).

  9. M. P. Collares and E. Pfender, “Magnetic probe measurements in plasma spray torches,” Proceedings of the 13th International Symposium on Plasma Chemistry, edited by C. K. Wu (Beijing, China), Vol. III, pp. 1466–1470 (1997).

  10. S. Paik, P. C. Huang, J. Heberlein, and E. Pfender, “Determination of the arc-root position in a dc plasma torch,” Plasma Chem. Plasma Process. 13, 379–397 (1993).

    Google Scholar 

  11. W. Finkelnburg and H. Maecker, “Electric arcs and thermal plasmas,” Encyclopedia of Physics, Vol. XXII, Springer, Berlin (1956).

    Google Scholar 

  12. Th. Peters, Z. Phys. 144, 612 (1956).

    Google Scholar 

  13. S. Malmberg, “Analysis of the plasma jet structure, particle motion, and coating quality during dc plasma spraying,” Ph.D. Thesis, University of Minnesota-Minneapolis (1994).

  14. P. Fauchais, J. F. Coudert, and M. Vardelle, “Diagnostics in thermal plasma processing,” Plasma Diagnostics, Vol. I (O. Anciello and D. L. Flamm, eds.), Academic Press, New York (1989).

    Google Scholar 

  15. D. B. Spalding, “Two-fluid models of turbulence,” CFDU Report CFD/85/4, CFDU, Imperial College, London (1985).

    Google Scholar 

  16. D. B. Spalding, “A turbulence model for buoyant and combusting flows,” CFDU Report CFD/86/4, CFDU, Imperial College, London (1986).

    Google Scholar 

  17. D. B. Spalding, Int. J. Physiochem. Hydrodynam. 4, 323 (1983).

    Google Scholar 

  18. P. C. Huang, J. Heberlein, and E. Pfender, “A two-fluid model of turbulence for a thermal plasma jet,” Plasma Chem. Plasma Process. 15, 25–46 (1995).

    Google Scholar 

  19. P. C. Huang, “A turbulent swirling arc model and a two-fluid turbulence model for thermal plasma sprays,” Ph.D. Thesis, University of Minnesota-Minneapolis (1993).

  20. D. Apelian, D. Wei, and M. Paliwal, Thin Solid Films 118, 395 (1984).

    Google Scholar 

  21. Y. P. Chyou and E. Pfender, “Behavior of particulates in thermal plasma flows,” Plasma Chem. Plasma Process. 9, 45–71 (1989).

    Google Scholar 

  22. C. H. Chang, “Numerical simulation of alumina spraying in argon-helium plasma jet,” Proceedings of the International Thermal Spray Conference (Orlando, Florida), (June 1992), p. 793.

  23. J. H. Park, Z. Duan, J. Heberlein, E. Pfender, Y. C. Lau, and H. P. Wang, “Modeling of fluctuations experienced in N2 and N2/H2 plasma jets issuing into atmospheric air,” Proceedings of the 13th International Symposium on Plasma Chemistry, edited by C. K. Wu (Beijing, China), Vol. I, pp. 326–331 (1997).

  24. P. Fauchais, A. C. Léger, M. Vardelle, and A. Vardelle, “Formation of plasma-sprayed oxide coatings,” Proceedings of the Julian Szekely Memorial Symposium on Materials Processing and the TMS Fall Extraction & Processing Conference, edited by H. Y. Sohn, J. W. Evans, and D. Apelian (Cambridge, Massachusetts), (October, 1997), pp. 571–592.

  25. H.-D. Steffens, Z. Babiak, and M. Wewel, IEEE Trans. Plasma Sci. 18, 974 (1989).

    Google Scholar 

  26. M. L. Thorpe, Adv. Mater. Process. 134, 69 (1988).

    Google Scholar 

  27. D. R. Marantz and D. R. Marantz, Proceedings of the 3rd National Thermal Spray Conference, p. 113 (1990).

  28. E. Sampson and L. Leider, Proceedings of the 5th National Thermal Spray Conference, p. 271 (1993).

  29. E. R. Sampson, Proceedings of the 5th National Thermal Spray Conference, p. 257 (1993).

  30. X. Wang, J. Heberlein, E. Pfender, and W. Gerberich, “Effect of gas velocity and particle velocity on coating adhesion in wire arc spraying,” Proceedings of the 9th National Thermal Spray Conference, Thermal Spray: Practical Solutions for Engineering Problems, edited by C. C. Berndt, published by ASM International, (1996), pp. 807–811.

  31. X. Wang, J. Heberlein, E. Pfender, and W. Gerberich, “Effect of shrouded CO2 gas atomization on coating properties in wire arc spray,” Proceedings of the 8th National Thermal Spray Conference (Houston, Texas), (1995), pp. 31–37.

  32. R. F. Heile and D. C. Hill, Welding J. p. 201–205 (1975).

  33. P. J. Wewitt and A. A. Hirst, Ann. Occup. Hyg. 37, 297 (1993).

    Google Scholar 

  34. M. Ushio, K. Nakata, M. Tanaka, H. Tong, and T. Mita, Trans. JWRI 23, 21 (1994).

    Google Scholar 

  35. T. Watanabe, X. Wang, J. Heberlein, and E. Pfender, “Flume generation mechanism in wire arc spraying,” ISPC-12 (Minneapolis, Minnesota, 1995), Vol. II, pp. 889–894.

    Google Scholar 

  36. T. Watanabe, X. Wang, J. Heberlein, E. Pfender, and W. Herwig, “Voltage and current fluctuations in wire arc spraying as indications for coating properties,” Proceedings of the 9th National Thermal Spray Conference, Thermal Spray: Practical Solutions for Engineering Problems, edited by C. C. Berndt, published by ASM International, (1996), pp. 577–583.

  37. E. R. G. Eckert and E. Pfender, “Advances in plasma heat transfer,” Adv. Heat Transfer 4, 229–313 (1967).

    Google Scholar 

  38. Z. P. Lu, J. Heberlein, and E. Pfender, “Process study of thermal plasma chemical vapor deposition of diamond, Part I: Substrate material, temperature, and methane concentration,” Plasma Chem. Plasma Proc. 12, 35–52 (1992).

    Google Scholar 

  39. Z. P. Lu, J. Heberlein, and E. Pfender, “Process study of thermal plasma chemical vapor deposition of diamond, Part II: Pressure dependence and effect of substrate pretreatment,” Plasma Chem. Plasma Proc. 12, 55–69 (1992).

    Google Scholar 

  40. K. A. Snail, C. M. Marks, Z. P. Lu, J. Heberlein, and E. Pfender, “High temperature, high rate homoepitaxial synthesis of diamond in a thermal plasma reactor,” Mater. Lett. 12, 301–305 (1991).

    Google Scholar 

  41. Z. P. Lu, K. Snail, C. Marks, J. Heberlein, and E. Pfender, “High rate homoepitaxial growth of diamond in thermal plasma,” Proc. 2nd Int. Symp. Diamond Mater. (The Electrochemical Society, Washington, DC, 1991), Vol. 91-8, pp. 99–106.

    Google Scholar 

  42. P. Greuel, H. Yoon, D. Ernie, and J. Roberts, Mater. Res. Soc. Symp. Proc. 334, 141 (1994).

    Google Scholar 

  43. P. Greuel, J. Roberts, and D. Ernie, Proceedings of the 12th International Symposium on Plasma Chemistry, edited by J. Heberlein, D. Ernie, and J. Roberts (Minneapolis, Minnesota), Vol. IV, p. 2209 (1995).

  44. B. W. Yu, “A model for chemical vapor deposition of diamond in a radio-frequency induction thermal plasma,” Ph.D. Thesis, University of Minnesota-Minneapolis (1994).

  45. B. W. Yu and S. L. Girshick, “Atomic carbon vapor as a diamond growth precursor in thermal plasmas,” J. Appl. Phys. 75, 3914–3923 (1994).

    Google Scholar 

  46. M. Asmann, C. F. M. Borges, J. Heberlein, and E. Pfender, “Thermal plasma chemical vapor deposition of diamond on steel,” Proceedings of the 13th International Symposium on Plasma Chemistry, edited by C. K. Wu (Beijing, China), Vol. III, pp. 1206–1211 (1997).

  47. C. Tsai, J. Nelson, W. Gerberich, J. Heberlein, and E. Pfender, “Metal reinforced thermal plasma diamond coatings,” J. Mater. Res. 7, 1967–1969 (1992).

    Google Scholar 

  48. C. Tsai, J. C. Nelson, and W. W. Gerberich, J. Heberlein, and E. Pfender, “Diamond-metal composite coatings on cemented carbide tools,” Diamond Relat. Mater. 2, 617–620 (1993).

    Google Scholar 

  49. T. Yoshida, T. Tani, H. Nishimura, and K. Akashi, J. Appl. Phys. 2, 640 (1983).

    Google Scholar 

  50. A. Kumar and R. Roy, J. Mater. Res. 3, 1373 (1989).

    Google Scholar 

  51. P. Kong and E. Pfender, Proceedings of the 2nd Int. Conf. Ceram. Powder Processing Sci. (Berchtesgaden, 1988).

  52. P. Kong and E. Pfender, Combustion and Plasma Synthesis of High Temperature Materials (Z. A. Munir and J. B. Holt, eds.), VCH Publishers, New York (1990), p. 420.

    Google Scholar 

  53. P. Kong, T. Or, L. Stachowicz, and E. Pfender, Better Ceramics through Chemistry IV, Mater. Res. Soc. Symp. Proc., edited by B. J. J. Zelinski, C. J. Brinker, D. E. Clark, and D. R. Ulrich (Pittsburgh, Pennsylvania), 180, 849 (1990).

  54. T. Or, Z. Lu, L. Stachowicz, P. Kong, and E. Pfender, Plasma Processing and Synthesis of Materials III, Mater. Res. Soc. Symp. Proc., edited by D. Apelian and J. Szekely (Pittsburgh, Pennsylvania), 190, 83 (1991).

  55. H. Zhu, Y. C. Lau, and E. Pfender, “RF plasma synthesis of YBa2-Cu3O7 − x powders,” J. Supercond. 3, 171–175 (1990).

    Google Scholar 

  56. K. Terashima, T. Yoshida, and K. Akashi, Jpn. Symp. on Plasma Chemistry, p. 157 (1988).

  57. T. Ono, M. Kagawa, Y. Syono, M. Ikebe, and Y. Muto, Plasma Chem. Plasma Process. 7, 201 (1987).

    Google Scholar 

  58. H. Zhu, Y. C. Lau, and E. Pfender, “Deposition of YBa2Cu3O7 − x thick films by the spray-ICP technique,” Proc. 9th Int. Symp. Plasma Chem. (Pugnochiuso, Italy, 1989), Vol. 3, pp. 1497.

    Google Scholar 

  59. P. C. Kong and E. Pfender, “Chapter 14: Plasma Processes,” Carbide, Nitride and Boride Materials Synthesis and Processing (A. W. Weimer, ed.), Chapman & Hall, London (1997).

    Google Scholar 

  60. N. Rao, S. Girshick, J. Heberlein, P. McMurry, S. Tones, D. Hausen, and B. Micheel, Plasma Chem. Plasma Process. 15, 581 (1995).

    Google Scholar 

  61. T. G. Barton, “Problem waste disposal by plasma heating”, Int. Recycling Congress (Berlin), Vol. I, pp. 733–736 (1979).

    Google Scholar 

  62. J. V. R. Heberlein, “New developments in non-transferred plasma torch technology,” Proceedings of the 2nd Japanese Symposium on Plasma Chemistry, (1989), p. 131.

  63. J. V. R. Heberlein, W. J. Melilli, S. V. Dighe, and W. H. Reed, “Adaptation of non-transferred plasma torches to new applications of plasma systems,” Proceeding of the Workshop on Industrial Plasma Applications, edited by M. I. Boulos (Pugnochiuso, Italy), (1989), p. 1.

  64. M. R. Funfschilling, W. Bernhard, R. C. Eschenbach, “Test results with the plasma centrifugal furnace at Muttenz, Switzerland,” Proceedings of the 1991 Incineration Conference (Knoxville, Tennessee).

  65. R. C. Eschenbach, “Use of plasma torches for melting special metals and for destroying and stabilizing hazardous wastes,” Proceedings of the Workshop on Industrial Plasma Applications, edited by M. Boulos (Pugnochiuso, Italy), (1989), pp. 127–136.

  66. R. C. Eschenbach, “Plasma centrifugal furnace for destroying hazardous wastes,” Proceedings of the 1st International EPRI Symposium (1990).

  67. M. P. Schlienger, “Apparatus and method for high temperature dispoal of hazardous waste materials,” U.S. Patent 4770109 (1988).

  68. M. R. Funfschilling and R. C. Eschenbach, “A plasma centrifugal furnace for treating hazardous waste, Muttenz, Switzerland,” Proceedings of the XIIth Congress International Union for Electroheat (Montreal, Canada) (1992).

  69. J. W. Sears, R. C. Eschenbach, and R. A. Hill, “The plasma centrifugal furnace: A method for stabilization and decomposition of toxic and radioactive wastes,” Waste Management 10, 165 (1990).

    Google Scholar 

  70. R. Haun, R. Eschenbach, D. Battleson, C. Alsberg, and T. Jackson, “Site test results with the PCF-6”, Proceedings of the 1992 Incineration Conference.

  71. E. Pfender, Q. Y. Han, T. W. Or, Z. P. Lu, and J. Heberlein, “Rapid synthesis of diamond by counter-flow liquid injection into an atmospheric pressure plasma jet,” Diamond Relat. Mater. 1, 127–133 (1992).

    Google Scholar 

  72. Q. Y. Han, T. W. Or, Z. P. Lu, J. Heberlein, and E. Pfender, “dc thermal plasma deposition of diamond films,” Thermal Plasma Applications in Materials and Metallurgical Processing, (N. El-Kaddah, ed.), TMS, Warrendale, Pennsylvania (1992), pp. 277–291.

    Google Scholar 

  73. C. E. G. Bennett, N. A. Kinnon, and L. S. Williams, “Sintering in gas discharges,” Nature (London) 217, 1287 (1968).

    Google Scholar 

  74. C. E. G. Bennett and N. A. Kinnon, “Glow discharge sintering of alumina,” Kinetics of Reactions in Ionic Systems (T. J. Gray and V. D. Frechette, eds.), Plenum Press, New York (1969), p. 408.

    Google Scholar 

  75. D. L. Johnson and R. R. Rizzo, “Plasma sintering of a-alumina,” Am. Ceram. Soc. Bull. 59, 467 (1980).

    Google Scholar 

  76. J. S. Kim and D. L. Johnson, “Plasma sintering of alumina,” Am. Ceram. Soc. Bull. 62, 620 (1980).

    Google Scholar 

  77. D. L. Johnson, W. B. Sanderson, J. M. Knowlton, and E. L. Kemer, “Sintering of a-Al2O3 in gas plasmas,” Adv. Ceram. 10, 656 (1985).

    Google Scholar 

  78. P. C. Kong, Y. C. Lau, and E. Pfender, “The effects of gas composition and gas pressure on RF sintering of MgO,” Proceedings of the MRS 1987 Spring Meeting (Anaheim, California), 98, pp. 371–375 (1987).

    Google Scholar 

  79. E. Pfender and Y. C. Lee, “Heat transfer analysis of the plasma sintering process,” Proceedings of the Materials Research Society (Elsevier Science Publishing Co., Inc.), 30, p. 141 (1984).

  80. N. P. Tandian, “Heat transfer in RF plasma sintering: A modeling and experimental study,” Ph.D. Thesis, University of Minnesota-Minneapolis (1994).

  81. N. P. Tandian and E. Pfender, “Studies of the high frequency (RF) plasma sintering process,” Proceedings of the 13th International Symposium on Plasma Chemistry, edited by C. K. Wu (Beijing, China), Vol. IV, pp. 1630–1635 (1997).

  82. N. M. Dignard and M. Boulos, “Ceramic powder spheroidization under induction plasma conditions,” Proceedings of the 13th International Symposium on Plasma Chemistry, edited by C. K. Wu (Beijing, China), Vol. III, p. 1031 (1997).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfender, E. Thermal Plasma Technology: Where Do We Stand and Where Are We Going?. Plasma Chemistry and Plasma Processing 19, 1–31 (1999). https://doi.org/10.1023/A:1021899731587

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021899731587

Navigation