Skip to main content
Log in

The Convergence Rate of Block Preconditioned Systems Arising from LMF-based ODE Codes

  • Published:
BIT Numerical Mathematics Aims and scope Submit manuscript

Abstract

The solution of ordinary an partial differential equations using implicit linear multi-step formulas (LMF)is considered. More precisely, boundary value methods (BVMs), a class of methods based on implicit formulas will be taken into account in this paper. These methods require the solution of large and sparse linear systems \(\hat M\)x = b. Block-circulant preconditioners have been propose to solve these linear systems. By investigating the spectral condition number of \(\hat M\), we show that the conjugate gradient method, when applied to solving the normalize preconditioned system, converges in at most O(log s) steps, where the integration step size is O(1/s). Numerical results are given to illustrate the effectiveness of the analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. O. Axelsson and V. A. Barker, Finite Element Solution of Boundary Value Problems, Theory and Computation, Academic Press, Orlando, FL, 1984.

    Google Scholar 

  2. A. O. H. Axelsson and J. G. Verwer, Boundary value techniques for initial value problems in ordinary differential equations, Math. Comp., 45 (1985), pp. 153-171.

    Google Scholar 

  3. P. Amodio and L. Brugnano, The conditioning of Toeplitz band matrices, Math. Comput. Model., 23: 10 (1996), pp. 29-42.

    Google Scholar 

  4. D. Bertaccini, P-circulant preconditioners and the systems of ODE codes, in Iterative Methods in Scientific Computation IV, IMACS Series in Computational and Applied Mathematics, D. R. Kincaid et al., eds., IMACS, NJ, 1999, pp. 179-193.

    Google Scholar 

  5. D. Bertaccini, A Circulant Preconditioner for the systems of LMF-based ODE codes, SIAM J. Sci. Comput., 22:3 (2000), pp. 767-786.

    Article  Google Scholar 

  6. D. Bertaccini, An analysis of circulant preconditioners for linear multistep integrators, submitted, available at URL http://www.math.unifi.it/bertaccini.

  7. D. Bertaccini, Reliable preconditioned iterative linear solvers for some numerical integrators, Numer. Linear Algebra Appl., 8:2 (2000), pp. 111-125.

    Article  Google Scholar 

  8. D. Bertaccini and M. K. Ng, Skew-circulant preconditioners for systems of LMF-based ODE codes, in Lecture Notes in Comp. Sci., L. Vulkov et al., eds., Springer-Verlag, New York, 2001, pp. 93-101.

    Google Scholar 

  9. A. Böttcher and S. Grudsky, On the condition numbers of large semi-definite Toeplitz matrices, Linear Algebra Appl., 279 (1998), pp. 285-301.

    Article  Google Scholar 

  10. A. Böttcher and B. Silbermann, Introduction to large truncated Toeplitz matrices, Springer-Verlag, New York, 1998.

    Google Scholar 

  11. L. Brugnano and D. Trigiante, Solving ODE by Linear Multistep Methods: Initial and Boundary Value Methods, Gordon and Breach, Reading, UK, 1998.

    Google Scholar 

  12. T. F. Chan and K. R. Jackson, The use of iterative linear equation solvers in codes for large systems of stiff IVPs for ODEs, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 378-417.

    Article  Google Scholar 

  13. T. F. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 766-771.

    Google Scholar 

  14. R. H. Chan and M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Review, 38:3 (1996), pp. 427-482.

    Article  Google Scholar 

  15. R. H. Chan, M. K. Ng, and X. Jin, Circulant preconditioners for solving ordinary differential equations, in Structured matrices, D. Bini et al., eds., Nova Science Pub., to appear.

  16. C. W. Gear and Y. Saad, Iterative solution of linear equations in ODE codes, SIAM J. Sci. Stat. Comput., 4 (1983), pp. 583-601.

    Article  Google Scholar 

  17. E. Hairer and G. Wanner, Solving Ordinary Differentials Equations II. Stiff and Differential Algebraic Problems, Springer-Verlag, Berlin, 1991.

    Google Scholar 

  18. M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur. Stand., 49 (1952), pp. 409-436.

    Google Scholar 

  19. R. Horn and C. Johnson, Matrix Analysis, Cambridge University Press, Cambridge, 1985.

    Google Scholar 

  20. J. D. Lambert, Numerical Methods for Ordinary Differential Systems, Wiley, Chichester, 1991.

    Google Scholar 

  21. N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast are nonsymmetric matrix iterations?, SIAM J. Matr. Anal. Appl., 13 (1992), pp. 778-795.

    Article  Google Scholar 

  22. Y. Saad and M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), pp. 856-869.

    Article  Google Scholar 

  23. G. Strang, A proposal for Toeplitz matrix calculations, Stud. Appl. Math., 74 (1986), pp. 171-176.

    Google Scholar 

  24. E. E. Tyrtyshnikov, A unifying approach to some old and new theorems on distribution and clustering, Linear Algebra Appl., 232 (1996), 1-43.

    Article  Google Scholar 

  25. H. A. van der Vorst, BICGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 10 (1992), pp. 631-644.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bertaccini, D., Ng, M.K. The Convergence Rate of Block Preconditioned Systems Arising from LMF-based ODE Codes. BIT Numerical Mathematics 41, 433–450 (2001). https://doi.org/10.1023/A:1021906926616

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1021906926616

Navigation