Skip to main content
Log in

Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains

  • Published:
Mathematical Geology Aims and scope Submit manuscript

Abstract

The continuous-lag Markov chain provides a conceptually simple, mathematically compact, and theoretically powerful model of spatial variability for categorical variables. Markov chains have a long-standing record of applicability to one-dimensional (1-D) geologic data, but 2- and 3-D applications are rare. Theoretically, a multidimensional Markov chain may assume that 1-D Markov chains characterize spatial variability in all directions. Given that a 1-D continuous Markov chain can be described concisely by a transition rate matrix, this paper develops 3-D continuous-lag Markov chain models by interpolating transition rate matrices established for three principal directions, say strike, dip, and vertical. The transition rate matrix for each principal direction can be developed directly from data or indirectly by conceptual approaches. Application of Sylvester's theorem facilitates establishment of the transition rate matrix, as well as calculation of transition probabilities. The resulting 3-D continuous-lag Markov chain models then can be applied to geo-statistical estimation and simulation techniques, such as indicator cokriging, disjunctive kriging, sequential indicator simulation, and simulated annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Allen, J. R. L., 1970a, Studies in fluviatile sedimentation: a comparison of fining upwards cyclothems with special reference to coarse-member composition and interpretation: Jour. Sed. Pet., v. 40,no. 1, p. 298–323.

    Google Scholar 

  • Allen, J. R. L., 1970b, Physical processes of sedimentation: American Elsevier Publ. Co., New York, 248 p.

    Google Scholar 

  • Agterberg, F. P., 1974, Geomathematics: Elsevier Scientific Publ. Co., Amsterdam and New York, 596 p.

    Google Scholar 

  • Carle, 1996, A transition probability-based approach to geostatistical characterization of hydrostratigraphic architecture: unpubl. doctoral dissertation, Univ. California, Davis, 248 p.

  • Carle, S. F., and Fogg, G. E., 1996, Transition probability-based indicator geostatistics: Math. Geology, v. 28,no. 4, p. 453–477.

    Google Scholar 

  • Carr, D. D., Horowitz, A., Hrarbar, S. V., Ridge, K. F., Rooney, R., Straw, W. T., Webb, W., and Potter, P. E. 1966, Stratigraphic sections, bedding sequences and random processes: Science, v. 28,no. 3753, p. 89–110.

    Google Scholar 

  • Dacey, M. F., and Krumbein, W. C., 1970, Markovian models in stratigraphic analysis: Math. Geology, v. 2,no. 2, p. 175–191.

    Google Scholar 

  • Deutsch, C. V., and Journel, A. G., 1992, GSLIB: Geostatistical Software Library and user's guide: Oxford Univ. Press, New York, 340 p.

    Google Scholar 

  • Doveton, J. H., 1971, An application of Markov chain analysis to the Ayrshire Coal Measures succession: Scott. Jour. Geology, v. 7,no. 1, p. 11–27.

    Google Scholar 

  • Doveton, J. H., 1994, Theory and applications of vertical variability measures from Markov chain analysis, in Yarus, J. H., and Chambers, R. L., eds., Stochastic Modeling and Geostatistics: Computer Applications in Geology, No. 3, Am. Assoc. Petroleum Geologists, Tulsa, Oklahoma, 379 p.

    Google Scholar 

  • Ethier, V. G., 1975, Application of Markov analysis to the Banff Formation (Mississippian), Alberta: Math. Geology, v. 7,no. 1, p. 47–61.

    Google Scholar 

  • Gingerich, P. D., 1969, Markov analysis of cyclic alluvial sediments: Jour. Sed. Pet., v. 39,no. 1, p. 330–332.

    Google Scholar 

  • Goodman, L. A., 1968, The analysis of cross-classified data: independence, quasi-independence, and interaction in contingency table with and without missing entries: Jour. Am. Stat. Assoc., v. 63, p. 1091–1131.

    Google Scholar 

  • Goovaerts, P., 1994, On a controversial method for modeling a coregionalization: Math. Geology, v. 26,no. 2, p. 197–204.

    Google Scholar 

  • Goulard, M., and Voltz, M., 1992, Linear coregionalization model: Tools for estimation and choice of cross-variogram matrix: Math. Geology, 24,no. 3, p. 269–286.

    Google Scholar 

  • Harbaugh, J. W., and Bonham-Carter, G. F., 1970, Computer simulation in geology: Wiley-Interscience, New York, 575 p.

    Google Scholar 

  • Hattori, I., 1976, Entropy in Markov chains and discrimination of cyclic patterns in lithologic successions: Math. Geology, v, 8,no. 4, p. 477–497.

    Google Scholar 

  • Journel, A. G., and Huijbregts, C. J., 1978. Mining geostatistics: Academic Press, London, 600 p.

    Google Scholar 

  • Krumbein, W. C., 1967, FORTRAN IV computer programs for Markov chain experiments in geology: Kansas Geol. Survey, Computer Contr. 38 p.

  • Krumbein, W. C., 1968, FORTRAN IV computer program for simulation of transgression and regression with continuous-time Markov models: Kansas Geol. Survey, Computer Contr. 26, 38 p.

  • Krumbein, W. C., and Dacey, M. F., 1969, Markov chains and embedded Markov chains in geology: Math. Geology, v. 1,no. 1, p. 79–96.

    Google Scholar 

  • Leeder, M. R., 1982, Sedimentology: George Allen & Unwin Ltd, London, 344 p.

    Google Scholar 

  • Lin, C., and Harbaugh, J. W., 1984, Graphic display of two-and three-dimensional Markov computer models in geology: Van Nostrand Reinhold, New York, 180 p.

    Google Scholar 

  • Miall, A. D., 1973, Markov chain analysis applied to an ancient alluvial plain succession: Sedimentology, v. 20,no. 3, p. 347–364.

    Google Scholar 

  • Miall, A. D., 1982, Analysis of fluvial depositional systems: Education course notes series #20: Am. Assoc. Petroleum Geologists, Tulsa, Oklahoma, 75 p.

    Google Scholar 

  • Moss, B. P., 1990, Stochastic reservoir description: a methodology, in Hurst, A., Lovell, A., and Morton, A. C., eds., Geological applications of wireline logs: Geol. Soc. London Spec. Publ., v. 48, p. 57–75.

  • Noyes, C. D., 1990, Hydrostratigraphic analysis of the Pilot Remediation Test Area, LLNL, Livermore, California: unpubl masters thesis, Univ. California, Davis, 165 p.

  • Politis, D. N., 1994, Markov chains in many dimensions: Adv. Appl. Prob., v. 26,no. 3, p. 756–774.

    Google Scholar 

  • Potter, P. E., and Blakely, R. F., 1967, Generation of a synthetic vertical profile of a fluvial sandstone body: Jour. Soc. Petr. Eng. of AIME, v. 7,no. 3, p. 243–251.

    Google Scholar 

  • Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P., 1992, Numerical recipes in FORTRAN: Cambridge Univ. Press, New York, 963 p.

    Google Scholar 

  • Qualheim, B. J., 1988, Well log report for the LLNL ground water project 1984–1987, Lawrence Livermore National Laboratory, UCID-21342 (updated 1989 and 1993), 12 p plus 340 sheets.

  • Rivoirard, J., 1994, Introduction to disjunctive kriging and non-linear geostatistics: Oxford Univ. Press, New York, 180 p.

    Google Scholar 

  • Rolke, W. A., 1991, Continuous-time Markov processes as a stochastic model for sedimentation: Math. Geology, v. 23,no. 3, p. 297–304.

    Google Scholar 

  • Ross, S., 1993, Introduction to probability models (5th ed.): Academic Press, San Diego, California, 556 p.

    Google Scholar 

  • Schwarzacher, W., 1969, The use of Markov chains in the study of sedimentary cycles: Math. Geology, v. 12,no. 3, p. 213–234.

    Google Scholar 

  • Smith, B. T., Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe, Y., Klema, V. C., and Moler, C. B., 1976, Matrix eigensystem routines—EISPACK guide: Lecture notes in computer science (2nd ed.), v. 6: Springer-Verlag, New York, 551 p.

    Google Scholar 

  • Switzer, P., 1965, A random set process in the plane with a Markovian property (note): Ann. Math. Stat., v. 36,no. 2, p. 1859–1863.

    Google Scholar 

  • Turk, G., 1982, Markov chains: Letters to the Editor: Math. Geology, v. 14,no. 5, p. 539–542.

    Google Scholar 

  • Turk, G., Naylor, M. A., and Woodcock, N. H., 1979, Transition analysis of structural sequences (discussion): Geol. Soc. America Bull., v. 90,no. 10, 1989–1991.

    Google Scholar 

  • Vistelius, A. B., 1949, On the question of the mechanism of formation of strata: Dokl. Akad. Nauk SSSR, v. 65,no. 2, p. 191–194.

    Google Scholar 

  • Vistelius, A. B., 1967, Studies in mathematical geology: Consultants Bureau, New York, p. 252–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carle, S.F., Fogg, G.E. Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains. Mathematical Geology 29, 891–918 (1997). https://doi.org/10.1023/A:1022303706942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022303706942

Navigation