Skip to main content
Log in

Phase Dependence (Liquid/Solid) of Normal Spectral Emissivities of Noble Metals at Melting Points

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Normal spectral emissivities of liquid and solid Cu, Ag, and Au have been determined at their melting (freezing) points in the visible region using a cold crucible as the heating method. The use of the cold crucible enables the solidification front to be moved on the molten metal surface slowly enough to measure the emissivities of liquid and solid phases separately at the freezing point. Combined standard uncertainties of the spectral emissivities and wavelengths have been estimated. In silver, the spectral emissivity obtained for the liquid is systematically larger than that for the solid over the visible region, which is consistent with the prediction from a classical free-electron model. In copper and gold, the spectral emissivities at wavelengths around their absorption edges do not change for the solid-to-liquid transition. The wavelength range where the emissivity of copper is independent of the phase is unexpectedly broad (the width is greater than 40 nm), which differs significantly from classical experimental studies on the so-called X-point in the emissivity of copper. A qualitative explanation is provided for the difference in the phase dependence (liquid/solid) of the emissivity between copper and gold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. C. M. Stubbs, Proc. R. Soc. London A 88:195(1913).

    Google Scholar 

  2. M. Otter, Z. Phys. 161:539(1961).

    Google Scholar 

  3. C. M. Stubbs and E. B. R. Prideaux, Proc. R. Soc. London A 87:451(1912).

    Google Scholar 

  4. A. G. Worthing, Phys. Rev. 28:174(1926).

    Google Scholar 

  5. U. Schley, Naturwiss. 47:222(1960).

    Google Scholar 

  6. C. Ronchi, J. P. Hiernaut, and G. J. Hyland, Metrologia 29:261(1992).

    Google Scholar 

  7. D. J. Price, Proc. R. Soc. London 59:131(1947).

    Google Scholar 

  8. S. Krishnan and P. C. Nordine, J. Appl. Phys. 80:1735(1996).

    Google Scholar 

  9. J. A. Treverton and J. L. Margrave, J. Chem. Thermodynamics 3:473(1971).

    Google Scholar 

  10. H. Watanabe, M. Susa, and K. Nagata, Metall. Mater. Trans. A. 28:2507(1997).

    Google Scholar 

  11. H. Watanabe, M. Susa, H. Fukuyama, and K. Nagata, High Temp.-High Press. 31:587(1999).

    Google Scholar 

  12. S. Krishnan, G. P. Hansen, R. H. Hauge, and J. L. Margrave, High Temp. Sci. 26:143(1990).

    Google Scholar 

  13. F. M. Mueller and J. C. Philips, Phys. Rev. 157:600(1967).

    Google Scholar 

  14. M. Welkowsky and R. Braunstein, Solid State Commun. 9:2139(1971).

    Google Scholar 

  15. J. C. Miller, Phil. Mag. 20:1115(1969).

    Google Scholar 

  16. M. Guerrisi and R. Rosei, Phys. Rev. B 12:557(1975).

    Google Scholar 

  17. M.-L. Thèye, Phys. Rev. B 2:3060(1970).

    Google Scholar 

  18. G. P. Pells and M. Shiga, J. Phys. C 2:1835(1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, H., Susa, M., Fukuyama, H. et al. Phase Dependence (Liquid/Solid) of Normal Spectral Emissivities of Noble Metals at Melting Points. International Journal of Thermophysics 24, 223–237 (2003). https://doi.org/10.1023/A:1022374501754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022374501754

Navigation