Skip to main content
Log in

Thermal Evolution of Alumina Prepared by the Sol-Gel Technique

  • Published:
Journal of Materials Synthesis and Processing

Abstract

The thermal evolution of an alumina gel synthesized by hydrolysis of aluminium alkoxide (sol-gel technique) was studied by thermal analysis (DTA and TGA), X-ray diffraction, FTIR and NMR spectroscopies, and specific surface area measurements. Between 400 and 900°C, γ- and δ-aluminas were formed showing aluminium vacancies preferentially located in tetrahedral sites. The atomic rearrangements produced during α-alumina formation are oriented to the progressive elimination of tetrahedral aluminium in the ultimate phase. The evolution of the specific surface area during heating is explained by changes in structure and microstructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. H. W. Gitzen, Alumina as a Ceramic Material (Am. Ceram. Soc., Columbus, OH, 1970).

    Google Scholar 

  2. C. J. Brinker and G. W. Scherer, Sol-Gel Science (Academic Press, San Diego, 1990).

    Google Scholar 

  3. J. J. Lannutti, Applications of Alumina Gels, Thesis (University of Florida, 1984).

  4. V. Saraswati, G. V. N. Rao, and G. V. Rama Rao, J. Mater. Sci. 22, 2529–2534 (1987).

    Google Scholar 

  5. T. Assih, A. Ayral, M. Abenoza, and J. Phalippou, J. Mater. Sci. 23, 3326–3331 (1988).

    Google Scholar 

  6. R. K. Dwivedi and G. Gowda, J. Mater. Sci. Lett. 4, 331–334 (1985).

    Google Scholar 

  7. D. S. Tucker, Gamma to Alpha Transformation in Spherical Alumina Powders, Thesis (University of Florida, 1983).

  8. M. D. Sacks, T. Y. Tseng, and S. Y. Lee, Am. Ceram. Bull. 63, 301–310 (1984).

    Google Scholar 

  9. C. S. John, N. C. M. Alma, and G. R. Hays, Appl. Cat. 6, 341–346 (1983).

    Google Scholar 

  10. S. Komarneni, R. Roy, C. A. Fyfe, and G. J. Kennedy, J. Am. Ceram. Soc. 68, C243–245 (1985).

    Google Scholar 

  11. R. Dupree, I. Farnan, A. J. Forty, S. El-Mashri, and L. Bottyan, J. Physique C8, 113–117 (1985).

    Google Scholar 

  12. S. J. Wilson and J. D. C. McConnell, J. Solid State Chem. 34, 315–322 (1980).

    Google Scholar 

  13. S. J. Wilson and M. H. Stacey. J. Coll. Interf. Sci. 82, 507–517 (1981).

    Google Scholar 

  14. G. Urretavizcaya, Materiales Compuestos Al 2 O 3 /SiC W : Sintesis, Procesamiento y Caracterización, Thesis (Natl. Univ. Mar Del Plata, 1995).

  15. Ph. Colomban, J. Mater. Sci. 24, 3002–3010 (1989).

    Google Scholar 

  16. A. B. Kiss, G. Keresztury, and L. Farkas, Spectrochim. Acta 36A, 653–658 (1980).

    Google Scholar 

  17. M. C. Stegmann, D. Vivien, and C. Mazières, Spectrochim. Acta 29A, 1653–1663 (1973).

    Google Scholar 

  18. H. Kodama, Infared Spectra of Minerals (Minister of Supply and Services, Canada, 1985).

    Google Scholar 

  19. M. C. Stegmann, D. Vivien, and C. Mazières, J. Chimie Phys. 71, 761–764 (1974).

    Google Scholar 

  20. V. C. Farmer, The Infrared Spectra of Minerals (Adlard & Son, Bartholomew Press, Dorking, Surrey, 1974).

    Google Scholar 

  21. G. Engelhardt and D. Michel, High-Resolution Solid-State NMR of Silicates and Zeolites (J. Wiley and Sons, Chichester, 1987).

    Google Scholar 

  22. A. C. Pierre and D. R. Uhlmann. J. Non-Cryst. Solids 82, 271–276 (1986).

    Google Scholar 

  23. M. T. Tsai and H. C. Shih, J. Mater. Sci. Lett. 12, 1025–1027 (1993).

    Google Scholar 

  24. D. Müller, W. Gessner, A. Samoson, E. Lippmaa, and G. Scheler, J. Chem. Soc. Dalton Trans. 1277–1281 (1986).

  25. G. Yamaguchi, I. Yasui, and W. Chiu, Bull. Chem. Soc. Japan 43, 2487–2491 (1970).

    Google Scholar 

  26. H. J. Jakobsen, J. Skibsted, H. Bildsøe, and N. C. Nielsen, J. Magn. Reson. 85, 173–180 (1989).

    Google Scholar 

  27. A. P. M. Kentgens, A. Bos, and P. J. Dirken, Solid State Nucl. Magn. Reson. 3, 315–322 (1994).

    Google Scholar 

  28. G. Kuwath-Fandrei, T. J. Bastou, J. S. Hall, C. Jäger, and M. E. Smith, J. Phys. Chem. 99, 15138–15141 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Urretavizcaya.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urretavizcaya, G., Cavalieri, A.L., López, J.M.P. et al. Thermal Evolution of Alumina Prepared by the Sol-Gel Technique. Journal of Materials Synthesis and Processing 6, 1–7 (1998). https://doi.org/10.1023/A:1022674107059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1022674107059

Navigation